Fused lasso regression for identifying differential correlations in brain connectome graphs

被引:4
|
作者
Yu, Donghyeon [1 ]
Lee, Sang Han [2 ,3 ]
Lim, Johan [4 ]
Xiao, Guanghua [5 ]
Craddock, Richard Cameron [6 ]
Biswal, Bharat B. [7 ]
机构
[1] Inha Univ, Dept Stat, Incheon, South Korea
[2] Nathan S Kline Inst Psychiat Res, Ctr Biomed Imaging & Neuromodulat, 140 Old Orangeburg Rd, Orangeburg, NY 10962 USA
[3] NYU, Sch Med, Dept Child & Adolescent Psychiat, New York, NY 10003 USA
[4] Seoul Natl Univ, Dept Stat, Seoul, South Korea
[5] Univ Texas Southwestern Med Ctr Dallas, Dept Clin Sci, Dallas, TX 75390 USA
[6] Univ Texas Austin, Dell Med Sch, Dept Diagnost Med, Austin, TX 78712 USA
[7] New Jersey Inst Technol, Dept Biomed Engn, Newark, NJ 07102 USA
基金
新加坡国家研究基金会;
关键词
fMRI; functional connectivity; fusion penalty; Gaussian graphical model; partial correlation; penalized least squares; precision matrix; INVERSE COVARIANCE ESTIMATION; PRECISION MATRIX ESTIMATION; FUNCTIONAL CONNECTIVITY; VARIABLE SELECTION; ELASTIC NET; NETWORKS; MRI; MINIMIZATION; INSIGHTS; DISEASE;
D O I
10.1002/sam.11382
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a procedure to find differential edges between 2 graphs from high-dimensional data. We estimate 2 matrices of partial correlations and their differences by solving a penalized regression problem. We assume sparsity only on differences between 2 graphs, not graphs themselves. Thus, we impose an (2) penalty on partial correlations and an (1) penalty on their differences in the penalized regression problem. We apply the proposed procedure in finding differential functional connectivity between healthy individuals and Alzheimer's disease patients.
引用
收藏
页码:203 / 226
页数:24
相关论文
共 50 条
  • [21] Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
    Emily S Finn
    Xilin Shen
    Dustin Scheinost
    Monica D Rosenberg
    Jessica Huang
    Marvin M Chun
    Xenophon Papademetris
    R Todd Constable
    Nature Neuroscience, 2015, 18 : 1664 - 1671
  • [22] A FASTER ALGORITHM SOLVING A GENERALIZATION OF ISOTONIC MEDIAN REGRESSION AND A CLASS OF FUSED LASSO PROBLEMS
    Hochbaum, Dorit S.
    Lu, Cheng
    SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (04) : 2563 - 2596
  • [23] Non-parametric quantile regression via the k-nn fused lasso
    Ye, Steven Siwei
    Padilla, Oscar Hernan Madrid
    Journal of Machine Learning Research, 2021, 22
  • [24] Non-parametric Quantile Regression via the K-NN Fused Lasso
    Ye, Steven Siwei
    Padilla, Oscar Hernan Madrid
    JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22 : 1 - 38
  • [25] Coordinate descent algorithm of generalized fused Lasso logistic regression for multivariate trend filtering
    Ohishi, Mineaki
    Yamamura, Mariko
    Yanagihara, Hirokazu
    JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2022, 5 (02) : 535 - 551
  • [26] An explainable fused lasso regression model for handling high-dimensional fuzzy data
    Hesamian, Gholamreza
    Johannssen, Arne
    Chukhrova, Nataliya
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 441
  • [27] Identifying High Order Brain Connectome Biomarkers via Learning on Hypergraph
    Zu, Chen
    Gao, Yue
    Munsell, Brent
    Kim, Minjeong
    Peng, Ziwen
    Zhu, Yingying
    Gao, Wei
    Zhang, Daoqiang
    Shen, Dinggang
    Wu, Guorong
    MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2016, 2016, 10019 : 1 - 9
  • [28] Coordinate descent algorithm of generalized fused Lasso logistic regression for multivariate trend filtering
    Mineaki Ohishi
    Mariko Yamamura
    Hirokazu Yanagihara
    Japanese Journal of Statistics and Data Science, 2022, 5 : 535 - 551
  • [29] Fused Lasso Approch in Regression Coefficients Clustering - Learning Parameter Heterogeneity in Data Integration
    Tang, Lu
    Song, Peter X. K.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [30] FUSED LASSO PENALIZED LEAST ABSOLUTE DEVIATION ESTIMATOR FOR HIGH DIMENSIONAL LINEAR REGRESSION
    Liu, Yanqing
    Tao, Jiyuan
    Zhang, Huan
    Xiu, Xianchao
    Kong, Lingchen
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2018, 8 (01): : 97 - 117