Adaptive fused LASSO in grouped quantile regression

被引:9
|
作者
Ciuperca G. [1 ]
机构
[1] Université Claude Bernard Lyon, Institut Camille Jordan, Villeurbanne
关键词
adaptive fused LASSO; Group selection; oracle properties; quantile regression; selection consistency;
D O I
10.1080/15598608.2016.1258601
中图分类号
学科分类号
摘要
This article considers the quantile model with grouped explanatory variables. In order to have the sparsity of the parameter groups but also the sparsity between two successive groups of variables, we propose and study an adaptive fused group LASSO quantile estimator. The number of variable groups can be fixed or divergent. We find the convergence rate under classical assumptions and we show that the proposed estimator satisfies the oracle properties. © 2017 Grace Scientific Publishing, LLC.
引用
收藏
页码:107 / 125
页数:18
相关论文
共 50 条
  • [1] Bayesian adaptive Lasso quantile regression
    Alhamzawi, Rahim
    Yu, Keming
    Benoit, Dries F.
    STATISTICAL MODELLING, 2012, 12 (03) : 279 - 297
  • [2] Adaptive sparse group LASSO in quantile regression
    Mendez-Civieta, Alvaro
    Aguilera-Morillo, M. Carmen
    Lillo, Rosa E.
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2021, 15 (03) : 547 - 573
  • [3] Adaptive sparse group LASSO in quantile regression
    Alvaro Mendez-Civieta
    M. Carmen Aguilera-Morillo
    Rosa E. Lillo
    Advances in Data Analysis and Classification, 2021, 15 : 547 - 573
  • [4] Adaptive lasso penalised censored composite quantile regression
    Bang, Sungwan
    Cho, Hyungjun
    Jhun, Myoungshic
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2016, 15 (01) : 22 - 46
  • [5] Adaptive LASSO model selection in a multiphase quantile regression
    Ciuperca, Gabriela
    STATISTICS, 2016, 50 (05) : 1100 - 1131
  • [6] Fused Adaptive Lasso for Spatial and Temporal Quantile Function Estimation
    Sun, Ying
    Wang, Huixia J.
    Fuentes, Montserrat
    TECHNOMETRICS, 2016, 58 (01) : 127 - 137
  • [7] Adaptive Lasso quantile regression with network structure and its application
    Wang X.
    Yao J.
    Yuan X.
    Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2019, 39 (08): : 1954 - 1965
  • [8] Variational inference on a Bayesian adaptive lasso Tobit quantile regression model
    Wang, Zhiqiang
    Wu, Ying
    Cheng, WeiLi
    STAT, 2023, 12 (01):
  • [9] Variable selection in composite quantile regression models with adaptive group lasso
    Zhou, Xiaoshuang
    International Journal of Applied Mathematics and Statistics, 2013, 45 (15): : 12 - 19
  • [10] Non-parametric quantile regression via the k-nn fused lasso
    Ye, Steven Siwei
    Padilla, Oscar Hernan Madrid
    Journal of Machine Learning Research, 2021, 22