Adaptive fused LASSO in grouped quantile regression

被引:9
|
作者
Ciuperca G. [1 ]
机构
[1] Université Claude Bernard Lyon, Institut Camille Jordan, Villeurbanne
关键词
adaptive fused LASSO; Group selection; oracle properties; quantile regression; selection consistency;
D O I
10.1080/15598608.2016.1258601
中图分类号
学科分类号
摘要
This article considers the quantile model with grouped explanatory variables. In order to have the sparsity of the parameter groups but also the sparsity between two successive groups of variables, we propose and study an adaptive fused group LASSO quantile estimator. The number of variable groups can be fixed or divergent. We find the convergence rate under classical assumptions and we show that the proposed estimator satisfies the oracle properties. © 2017 Grace Scientific Publishing, LLC.
引用
收藏
页码:107 / 125
页数:18
相关论文
共 50 条
  • [41] The impact of air pollution on birthweight: evidence from grouped quantile regression
    Martina Pons
    Empirical Economics, 2022, 62 : 279 - 296
  • [42] A Grouped GEE Framework for Quantile Regression in Heterogeneous Longitudinal Data Analysis
    Xu, Litian
    Huang, Shiwei
    Chen, Yu
    STAT, 2025, 14 (02):
  • [43] Bayesian LASSO-Regularized quantile regression for linear regression models with autoregressive errors
    Tian, Yuzhu
    Shen, Silian
    Lu, Ge
    Tang, Manlai
    Tian, Maozai
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2019, 48 (03) : 777 - 796
  • [44] Time-adaptive quantile regression
    Moller, Jan Kloppenborg
    Nielsen, Henrik Aalborg
    Madsen, Henrik
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (03) : 1292 - 1303
  • [45] Adaptive local linear quantile regression
    Yu-nan Su
    Mao-zai Tian
    Acta Mathematicae Applicatae Sinica, English Series, 2011, 27
  • [46] Adaptive local linear quantile regression
    Su, Yu-nan
    Tian, Mao-zai
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2011, 27 (03): : 509 - 516
  • [47] A Homotopy Algorithm for the Quantile Regression Lasso and Related Piecewise Linear Problems
    Osborne, M. R.
    Turlach, B. A.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2011, 20 (04) : 972 - 987
  • [48] Fast Expectation Propagation for Heteroscedastic, Lasso-Penalized, and Quantile Regression
    Zhou, Jackson
    Ormerod, John T.
    Grazian, Clara
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [49] Classification of spectral data using fused lasso logistic regression
    Yu, Donghyeon
    Lee, Seul Ji
    Lee, Won Jun
    Kim, Sang Cheol
    Lim, Johan
    Kwon, Sung Won
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2015, 142 : 70 - 77
  • [50] Bayesian geographically weighted regression using Fused Lasso prior
    Sakai, Toshiki
    Tsuchida, Jun
    Yadohisa, Hiroshi
    SPATIAL STATISTICS, 2025, 66