Joint Adaptive Graph Learning and Discriminative Analysis for Unsupervised Feature Selection

被引:14
|
作者
Zhao, Haifeng [1 ]
Li, Qi [1 ]
Wang, Zheng [2 ,3 ]
Nie, Feiping [2 ,3 ]
机构
[1] Anhui Univ, Sch Comp Sci & Technol, Anhui Prov Key Lab Multimodal Cognit Computat, Hefei 230601, Anhui, Peoples R China
[2] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Shaanxi, Peoples R China
[3] Northwestern Polytech Univ, Sch Artificial Intelligence Opt & Elect iOPEN, Xian 710072, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Unsupervised feature selection; Adaptive graph learning; Intrinsic structure exploiting; Uncorrelated constraint; CLASSIFICATION;
D O I
10.1007/s12559-021-09875-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised feature selection plays a dominant role in the process of high-dimensional and unlabeled data. Conventional spectral-based unsupervised feature selection methods always learn the subspace based on the predefined graph which constructed by the original features. Therefore, if the data is corrupted by the noise or redundancy existing in the high-dimensional, then the graph will be incorrect and further degrade the performance of downstream tasks. In this paper, we propose a new unsupervised feature selection method, in which the graph is self-adjusting by the original graph and learned subspace, so as to be the optimal one. Besides, the uncorrelated constraint is added to enhance the discriminability of the model. To optimize the model, we propose an alternative iterative algorithm and provide strict convergence proof. Extensive experiments are conducted to evaluate the performance of our method in comparison with other SOTA methods. The proposed adaptive graph learning strategy can learn a high-quality graph with the information of data structure more accurate. Besides, the uncorrelated constraint extremely ensures the discriminability of selected features.
引用
收藏
页码:1211 / 1221
页数:11
相关论文
共 50 条
  • [41] Discriminative and Robust Autoencoders for Unsupervised Feature Selection
    Ling, Yunzhi
    Nie, Feiping
    Yu, Weizhong
    Li, Xuelong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 1622 - 1636
  • [42] Unsupervised feature selection via multiple graph fusion and feature weight learning
    Chang TANG
    Xiao ZHENG
    Wei ZHANG
    Xinwang LIU
    Xinzhong ZHU
    En ZHU
    Science China(Information Sciences), 2023, 66 (05) : 56 - 72
  • [43] Unsupervised feature selection via multiple graph fusion and feature weight learning
    Tang, Chang
    Zheng, Xiao
    Zhang, Wei
    Liu, Xinwang
    Zhu, Xinzhong
    Zhu, En
    SCIENCE CHINA-INFORMATION SCIENCES, 2023, 66 (05)
  • [44] Joint Domain Alignment and Discriminative Feature Learning for Unsupervised Deep Domain Adaptation
    Chen, Chao
    Chen, Zhihong
    Jiang, Boyuan
    Jin, Xinyu
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 3296 - 3303
  • [45] Collaborative and Discriminative Subspace Learning for unsupervised multi-view feature selection
    Wu, Jian-Sheng
    Li, Yanlan
    Gong, Jun-Xiao
    Min, Weidong
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [46] Unsupervised feature analysis with sparse adaptive learning
    Wang, Xiao-dong
    Chen, Rung-Ching
    Hong, Chao-qun
    Zeng, Zhi-qiang
    PATTERN RECOGNITION LETTERS, 2018, 102 : 89 - 94
  • [47] Multiple graph unsupervised feature selection
    Du, Xingzhong
    Yan, Yan
    Pan, Pingbo
    Long, Guodong
    Zhao, Lei
    SIGNAL PROCESSING, 2016, 120 : 754 - 760
  • [48] Unsupervised Feature Selection by Graph Optimization
    Zhang, Zhihong
    Bai, Lu
    Liang, Yuanheng
    Hancock, Edwin R.
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2015, PT I, 2015, 9279 : 130 - 140
  • [49] Joint Adaptive Dual Graph and Feature Selection for Domain Adaptation
    Sun, Jing
    Wang, Zhihui
    Wang, Wei
    Li, Haojie
    Sun, Fuming
    Ding, Zhengming
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (03) : 1453 - 1466
  • [50] UNSUPERVISED FEATURE SELECTION BY NONNEGATIVE SPARSITY ADAPTIVE SUBSPACE LEARNING
    Zhou, Nan
    Cheng, Hong
    Zheng, Ya-Li
    He, Liang-Tian
    Pedrycz, Witold
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2016, : 18 - 24