Unsupervised feature selection via multiple graph fusion and feature weight learning

被引:0
|
作者
Chang TANG [1 ,2 ]
Xiao ZHENG [3 ]
Wei ZHANG [4 ]
Xinwang LIU [3 ]
Xinzhong ZHU [5 ]
En ZHU [3 ]
机构
[1] School of Computer Science, China University of Geosciences
[2] State Key Laboratory for Novel Software Technology, Nanjing University
[3] School of Computer, National University of Defense Technology
[4] National Supercomputing Center in Jinan, Qilu University of Technology (Shandong Academy of Sciences)
[5] College of Mathematics, Physics and Information Engineering, Zhejiang Normal University
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
D O I
暂无
中图分类号
TP311.13 [];
学科分类号
1201 ;
摘要
Unsupervised feature selection attempts to select a small number of discriminative features from original high-dimensional data and preserve the intrinsic data structure without using data labels. As an unsupervised learning task, most previous methods often use a coefficient matrix for feature reconstruction or feature projection, and a certain similarity graph is widely utilized to regularize the intrinsic structure preservation of original data in a new feature space. However, a similarity graph with poor quality could inevitably afect the final results. In addition, designing a rational and efective feature reconstruction/projection model is not easy. In this paper, we introduce a novel and efective unsupervised feature selection method via multiple graph fusion and feature weight learning(MGF2WL) to address these issues. Instead of learning the feature coefficient matrix, we directly learn the weights of diferent feature dimensions by introducing a feature weight matrix, and the weighted features are projected into the label space. Aiming to exploit sufficient relation of data samples, we develop a graph fusion term to fuse multiple predefined similarity graphs for learning a unified similarity graph, which is then deployed to regularize the local data structure of original data in a projected label space. Finally, we design a block coordinate descent algorithm with a convergence guarantee to solve the resulting optimization problem. Extensive experiments with sufficient analyses on various datasets are conducted to validate the efficacy of our proposed MGF2WL.
引用
收藏
页码:56 / 72
页数:17
相关论文
共 50 条
  • [1] Unsupervised feature selection via multiple graph fusion and feature weight learning
    Tang, Chang
    Zheng, Xiao
    Zhang, Wei
    Liu, Xinwang
    Zhu, Xinzhong
    Zhu, En
    SCIENCE CHINA-INFORMATION SCIENCES, 2023, 66 (05)
  • [2] Unsupervised feature selection with adaptive multiple graph learning
    Zhou, Peng
    Du, Liang
    Li, Xuejun
    Shen, Yi-Dong
    Qian, Yuhua
    PATTERN RECOGNITION, 2020, 105
  • [3] Unsupervised Feature Selection via Controllable Adaptive Graph Learning and Discriminative Feature Learning
    Huang, Pei
    Xie, Mengying
    Yang, Xiaowei
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 15600 - 15614
  • [4] Unsupervised Feature Selection via Controllable Adaptive Graph Learning and Discriminative Feature Learning
    Huang, Pei
    Xie, Mengying
    Yang, Xiaowei
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 15600 - 15614
  • [5] Multiple graph unsupervised feature selection
    Du, Xingzhong
    Yan, Yan
    Pan, Pingbo
    Long, Guodong
    Zhao, Lei
    SIGNAL PROCESSING, 2016, 120 : 754 - 760
  • [6] Adaptive Graph Fusion for Unsupervised Feature Selection
    Niu, Sijia
    Zhu, Pengfei
    Hu, Qinghua
    Shi, Hong
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: DEEP LEARNING, PT II, 2019, 11728 : 3 - 15
  • [7] Unsupervised Discriminative Feature Selection via Contrastive Graph Learning
    Zhou, Qian
    Wang, Qianqian
    Gao, Quanxue
    Yang, Ming
    Gao, Xinbo
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 972 - 986
  • [8] Unsupervised Feature Selection via Adaptive Graph Learning and Constraint
    Zhang, Rui
    Zhang, Yunxing
    Li, Xuelong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (03) : 1355 - 1362
  • [9] Adaptive Graph Learning for Unsupervised Feature Selection
    Zhang, Zhihong
    Bai, Lu
    Liang, Yuanheng
    Hancock, Edwin R.
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2015, PT I, 2015, 9256 : 790 - 800
  • [10] UNSUPERVISED FEATURE SELECTION BY JOINT GRAPH LEARNING
    Zhang, Zhihong
    Xiahou, Jianbing
    Liang, Yuanheng
    Chen, Yuhan
    2015 IEEE CHINA SUMMIT & INTERNATIONAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING, 2015, : 554 - 558