Adaptive Graph Fusion for Unsupervised Feature Selection

被引:0
|
作者
Niu, Sijia [1 ]
Zhu, Pengfei [1 ]
Hu, Qinghua [1 ]
Shi, Hong [1 ]
机构
[1] Tianjin Univ, Coll Intelligence & Comp, Tianjin 300350, Peoples R China
关键词
Graph fusion; Unsupervised feature selection; Self-representation; ROBUST;
D O I
10.1007/978-3-030-30484-3_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The massive high-dimensional data brings about great time complexity, high storage burden and poor generalization ability of learning models. Feature selection can alleviate curse of dimensionality by selecting a subset of features. Unsupervised feature selection is much challenging due to lack of label information. Most methods rely on spectral clustering to generate pseudo labels to guide feature selection in unsupervised setting. Graphs for spectral clustering can be constructed in different ways, e.g., kernel similarity, or self-representation. The construction of adjacency graphs could be affected by the parameters of kernel functions, the number of nearest neighbors or the size of the neighborhood. However, it is difficult to evaluate the effectiveness of different graphs in unsupervised feature selection. Most existing algorithms only select one graph by experience. In this paper, we propose a novel adaptive multi-graph fusion based unsupervised feature selection model (GFFS). The proposed model is free of graph selection and can combine the complementary information of different graphs. Experiments on benchmark datasets show that GFFS outperforms the state-of-the-art unsupervised feature selection algorithms.
引用
收藏
页码:3 / 15
页数:13
相关论文
共 50 条
  • [1] Adaptive Graph Learning for Unsupervised Feature Selection
    Zhang, Zhihong
    Bai, Lu
    Liang, Yuanheng
    Hancock, Edwin R.
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2015, PT I, 2015, 9256 : 790 - 800
  • [2] Adaptive unsupervised feature selection with robust graph regularization
    Zhiwen Cao
    Xijiong Xie
    Feixiang Sun
    International Journal of Machine Learning and Cybernetics, 2024, 15 : 341 - 354
  • [3] Adaptive unsupervised feature selection with robust graph regularization
    Cao, Zhiwen
    Xie, Xijiong
    Sun, Feixiang
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (02) : 341 - 354
  • [4] Unsupervised feature selection with adaptive multiple graph learning
    Zhou, Peng
    Du, Liang
    Li, Xuejun
    Shen, Yi-Dong
    Qian, Yuhua
    PATTERN RECOGNITION, 2020, 105
  • [5] Unsupervised Feature Selection via Adaptive Multimeasure Fusion
    Zhang, Rui
    Nie, Feiping
    Wang, Yunhai
    Li, Xuelong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (09) : 2886 - 2892
  • [6] Unsupervised feature selection via multiple graph fusion and feature weight learning
    Tang, Chang
    Zheng, Xiao
    Zhang, Wei
    Liu, Xinwang
    Zhu, Xinzhong
    Zhu, En
    SCIENCE CHINA-INFORMATION SCIENCES, 2023, 66 (05)
  • [7] Unsupervised feature selection via multiple graph fusion and feature weight learning
    Chang TANG
    Xiao ZHENG
    Wei ZHANG
    Xinwang LIU
    Xinzhong ZHU
    En ZHU
    Science China(Information Sciences), 2023, 66 (05) : 56 - 72
  • [8] Unsupervised Feature Selection via Adaptive Graph Learning and Constraint
    Zhang, Rui
    Zhang, Yunxing
    Li, Xuelong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (03) : 1355 - 1362
  • [9] Generalized Uncorrelated Regression with Adaptive Graph for Unsupervised Feature Selection
    Li, Xuelong
    Zhang, Han
    Zhang, Rui
    Liu, Yun
    Nie, Feiping
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (05) : 1587 - 1595
  • [10] Unsupervised feature selection via adaptive graph and dependency score
    Huang, Pei
    Yang, Xiaowei
    PATTERN RECOGNITION, 2022, 127