Hardy-type nonlocality proof for two maximally entangled particles

被引:0
|
作者
Kalamidas, D [1 ]
机构
[1] CUNY City Coll, Inst Ultrafast Spect & Lasers, New York, NY 10031 USA
基金
美国国家航空航天局;
关键词
Bell's theorem; quantum nonlocality; hidden variables;
D O I
10.1016/j.physleta.2004.09.072
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a variation on a gedanken experiment of Hardy [Phys. Rev. Lett. 68 (1992) 2981] that allows a Hardy-type nonlocality proof for two maximally entangled particles in a four-dimensional Hilbert space. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:183 / 186
页数:4
相关论文
共 50 条
  • [41] COMPLEX INTERPOLATION OF HARDY-TYPE SUBSPACES
    KALTON, NJ
    MATHEMATISCHE NACHRICHTEN, 1995, 171 : 227 - 258
  • [42] Sharpness of some Hardy-type inequalities
    Lars-Erik Persson
    Natasha Samko
    George Tephnadze
    Journal of Inequalities and Applications, 2023
  • [43] The Optimal Constant in Hardy-type Inequalities
    Mu-Fa CHEN
    Acta Mathematica Sinica,English Series, 2015, (05) : 731 - 754
  • [44] Interpolation of Operators in Hardy-Type Spaces
    Krotov, V. G.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2023, 323 (01) : 173 - 187
  • [45] The Optimal Constant in Hardy-type Inequalities
    Mu-Fa CHEN
    ActaMathematicaSinica, 2015, 31 (05) : 731 - 754
  • [46] On a scale of Hardy-type integral inequalities
    Dubinskii, Yu. A.
    DOKLADY MATHEMATICS, 2010, 81 (01) : 111 - 114
  • [47] New Hardy-type integral inequalities
    Manna, Atanu
    ACTA SCIENTIARUM MATHEMATICARUM, 2020, 86 (3-4): : 467 - 491
  • [48] On a new class of Hardy-type inequalities
    EO Adeleke
    A Čižmešija
    JA Oguntuase
    L-E Persson
    D Pokaz
    Journal of Inequalities and Applications, 2012
  • [49] A new approach to Hardy-type inequalities
    Osekowski, Adam
    ARCHIV DER MATHEMATIK, 2015, 104 (02) : 165 - 176
  • [50] Interpolation for intersections of Hardy-type spaces
    Sergei V. Kislyakov
    Ilya K. Zlotnikov
    Israel Journal of Mathematics, 2020, 239 : 21 - 38