Hardy-type nonlocality proof for two maximally entangled particles

被引:0
|
作者
Kalamidas, D [1 ]
机构
[1] CUNY City Coll, Inst Ultrafast Spect & Lasers, New York, NY 10031 USA
基金
美国国家航空航天局;
关键词
Bell's theorem; quantum nonlocality; hidden variables;
D O I
10.1016/j.physleta.2004.09.072
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a variation on a gedanken experiment of Hardy [Phys. Rev. Lett. 68 (1992) 2981] that allows a Hardy-type nonlocality proof for two maximally entangled particles in a four-dimensional Hilbert space. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:183 / 186
页数:4
相关论文
共 50 条
  • [31] On Hardy-type integral inequalities
    Leng, Tuo
    Feng, Yong
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2013, 34 (10) : 1297 - 1304
  • [32] ON WEIGHTED HARDY-TYPE SPACES
    VLASOV, VI
    RACHKOV, AV
    DOKLADY AKADEMII NAUK, 1993, 328 (03) : 281 - 284
  • [33] A note on Hardy-type inequalities
    Gao, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (07) : 1977 - 1984
  • [34] On Hardy-type integral inequalities
    Tuo Leng
    Yong Feng
    Applied Mathematics and Mechanics, 2013, 34 : 1297 - 1304
  • [35] Two-sided hardy-type inequalities for monotone functions
    Stepanov, V. D.
    Persson, L. E.
    Popova, O. V.
    DOKLADY MATHEMATICS, 2009, 80 (03) : 814 - 817
  • [36] Testing quantum nonlocality with high probability using quantum mixed state based on hardy-type paradox
    Liu Jin
    Miao Bo
    Jia Xin-Yan
    Fan Dai-He
    ACTA PHYSICA SINICA, 2019, 68 (23)
  • [37] Nonlocality without inequalities has not been proved for maximally entangled states
    Cabello, A
    PHYSICAL REVIEW A, 2000, 61 (02):
  • [38] Nonlocality without inequalities has not been proved for maximally entangled states
    Cabello, Adan
    Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 61 (02): : 221191 - 221196
  • [39] Hardy's nonlocality proof using twisted photons
    Chen, Lixiang
    Romero, Jacquiline
    OPTICS EXPRESS, 2012, 20 (19): : 21687 - 21692
  • [40] ON HARDY-TYPE INEQUALITIES FOR WEIGHTED MEANS
    Pales, Zsolt
    Pasteczka, Pawel
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2019, 13 (01): : 217 - 233