Heat Transfer Analysis on Carboxymethyl Cellulose Water-Based Cross Hybrid Nanofluid Flow with Entropy Generation

被引:23
|
作者
Ali, F. [1 ]
Loganathan, K. [2 ,3 ]
Eswaramoorthi, S. [4 ]
Prabu, K. [5 ]
Zaib, A. [1 ]
Chaudhary, Dinesh Kumar [6 ]
机构
[1] Fed Urdu Univ Arts Sci & Technol, Dept Math Sci, Karachi 75300, Pakistan
[2] Manipal Univ Jaipur, Dept Math & Stat, Jaipur 303007, Rajasthan, India
[3] Live4Research, Res & Dev Wing, Tiruppur 638106, Tamil Nadu, India
[4] Dr NGP Arts & Sci Coll, Dept Math, Coimbatore, Tamil Nadu, India
[5] Kongu Engn Coll, Dept Phys, Perundurai, Erode 638060, Tamil Nadu, India
[6] Tribhuvan Univ, Dept Phys, Amrit Campus, Kathmandu, Nepal
关键词
RHEOLOGICAL PROPERTIES; STRETCHING SHEET; TRANSPORT; CHANNEL; IMPACT; POINT; FLUID; SLIP;
D O I
10.1155/2022/5252918
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The physical phenomena of convective flow of Cross fluid containing carboxymethyl cellulose water over a stretching sheet with convective heating were studied. Cross nanofluid containing Al2O3, Cu nanoparticles, and based fluid of CMC water is used. Entropy generation minimization is examined in the current analysis. The system of PDEs is altered into a set of ODEs through suitable conversion. Further, these equations are computed numerically through the MATLAB BVP4c technique. The behavior of governing parameters on the velocity, temperature, entropy generation, and Bejan number is plotted and reported via graphs. It is found that the larger value of unsteady variable reduced the velocity, thermal layer, and entropy production. Surface drag frication of the Al2O3 and Cu and Al2O3 + Cu is enhanced with the more presence of unsteady parameter. Comparison of current results in a limiting case is obtained with earlier analysis and found an optimum agreement.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Computational analysis of entropy generation optimization for Cu-Al2O3 water-based chemically reactive magnetized radiative hybrid nanofluid flow
    Govind, Pooja
    Sharma, Pooja
    Sharma, B. K.
    Gandhi, Rishu
    Almohsen, Bandar
    Perez, Laura M.
    AIP ADVANCES, 2024, 14 (07)
  • [42] Influence of Nozzle-Type Inserts on the Heat Transfer Performance of EG/Water-Based Hybrid Nanofluid
    Asirinaidu, D.
    Ramji, Koona
    Nagaraju, Dora
    Prasanna, Ardhani Satya Bhanu
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2025,
  • [43] Heat transfer and entropy generation of the nanofluid flow inside sinusoidal wavy channels
    Dormohammadi, Reza
    Farzaneh-Gord, Mahmood
    Ebrahimi-Moghadam, Amir
    Ahmadi, Mohammad Hossein
    JOURNAL OF MOLECULAR LIQUIDS, 2018, 269 : 229 - 240
  • [44] MHD effects on heat transfer and entropy generation of nanofluid flow in an open cavity
    Mehrez, Zouhaier, 1600, Elsevier B.V., Netherlands (374):
  • [45] Entropy generation of nanofluid flow and heat transfer driven through a paralleled microchannel
    Xu, Hang
    Raees, Ammarah
    Xu, Xiao-Hang
    CANADIAN JOURNAL OF PHYSICS, 2019, 97 (06) : 678 - 691
  • [46] MHD effects on heat transfer and entropy generation of nanofluid flow in an open cavity
    Mehrez, Zouhaier
    El Cafsi, Afif
    Belghith, Ali
    Le Quéré, Patrick
    Journal of Magnetism and Magnetic Materials, 2015, 374 : 214 - 224
  • [47] MHD effects on heat transfer and entropy generation of nanofluid flow in an open cavity
    Mehrez, Zouhaier
    El Cafsi, Afif
    Belghith, Ali
    Le Quere, Patrick
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2015, 374 : 214 - 224
  • [48] Experimental and numerical analysis of convective heat transfer and entropy generation of graphene/water nanofluid in AEAOT heat exchanger
    Nagaraju, Dora
    Mohammad, Abdul Razack
    Santhosi, B. V. S. R. N.
    Kolla, Narendra Kumar
    Tota, Rakesh Kumar
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2023, 150
  • [49] Entropy generation and heat transfer analysis of magnetic hybrid nanofluid inside a square cavity with thermal radiation
    Sudarsana Reddy, P.
    Sreedevi, P.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (01):
  • [50] Entropy generation and heat transfer analysis of magnetic hybrid nanofluid inside a square cavity with thermal radiation
    P. Sudarsana Reddy
    P. Sreedevi
    The European Physical Journal Plus, 136