Heat Transfer Analysis on Carboxymethyl Cellulose Water-Based Cross Hybrid Nanofluid Flow with Entropy Generation

被引:23
|
作者
Ali, F. [1 ]
Loganathan, K. [2 ,3 ]
Eswaramoorthi, S. [4 ]
Prabu, K. [5 ]
Zaib, A. [1 ]
Chaudhary, Dinesh Kumar [6 ]
机构
[1] Fed Urdu Univ Arts Sci & Technol, Dept Math Sci, Karachi 75300, Pakistan
[2] Manipal Univ Jaipur, Dept Math & Stat, Jaipur 303007, Rajasthan, India
[3] Live4Research, Res & Dev Wing, Tiruppur 638106, Tamil Nadu, India
[4] Dr NGP Arts & Sci Coll, Dept Math, Coimbatore, Tamil Nadu, India
[5] Kongu Engn Coll, Dept Phys, Perundurai, Erode 638060, Tamil Nadu, India
[6] Tribhuvan Univ, Dept Phys, Amrit Campus, Kathmandu, Nepal
关键词
RHEOLOGICAL PROPERTIES; STRETCHING SHEET; TRANSPORT; CHANNEL; IMPACT; POINT; FLUID; SLIP;
D O I
10.1155/2022/5252918
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The physical phenomena of convective flow of Cross fluid containing carboxymethyl cellulose water over a stretching sheet with convective heating were studied. Cross nanofluid containing Al2O3, Cu nanoparticles, and based fluid of CMC water is used. Entropy generation minimization is examined in the current analysis. The system of PDEs is altered into a set of ODEs through suitable conversion. Further, these equations are computed numerically through the MATLAB BVP4c technique. The behavior of governing parameters on the velocity, temperature, entropy generation, and Bejan number is plotted and reported via graphs. It is found that the larger value of unsteady variable reduced the velocity, thermal layer, and entropy production. Surface drag frication of the Al2O3 and Cu and Al2O3 + Cu is enhanced with the more presence of unsteady parameter. Comparison of current results in a limiting case is obtained with earlier analysis and found an optimum agreement.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Computational analysis of entropy generation for cross-nanofluid flow
    M. Ali
    W. A. Khan
    M. Irfan
    F. Sultan
    M. Shahzed
    M. Khan
    Applied Nanoscience, 2020, 10 : 3045 - 3055
  • [32] Computational analysis of entropy generation for cross-nanofluid flow
    Ali, M.
    Khan, W. A.
    Irfan, M.
    Sultan, F.
    Shahzed, M.
    Khan, M.
    APPLIED NANOSCIENCE, 2020, 10 (08) : 3045 - 3055
  • [33] Statistical analysis on the rate of heat transfer of radiative water-based hybrid nanofluid flow over an elongating surface due to velocity slip and melting heat condition
    Mathur, Priya
    Mishra, S. R.
    Pattnaik, P. K.
    Panda, Subhajit
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2024, 104 (11):
  • [34] Mixed convective flow of water-based nanofluid and melting heat transfer in a partially porous annulus
    De Souze, Stephon
    Job, Victor M.
    Narayana, Mahesha
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2024, 54
  • [35] Impact of water-based TiO2 nanofluid on heat transfer under transition flow
    Logesh, K.
    Arulprakasajothi, M.
    Renish, R. Rohith
    Venkatasudhahar, M.
    Raja, N. Dilip
    MATERIALS TODAY-PROCEEDINGS, 2018, 5 (09) : 20544 - 20548
  • [36] Heat and Mass Transfer Analysis on MHD 3-D Water-Based Nanofluid
    Baag, S.
    Mishra, S. R.
    JOURNAL OF NANOFLUIDS, 2015, 4 (03) : 352 - 361
  • [37] Thermo-hydraulic and entropy generation analysis of recharging microchannel using water-based graphene-silver hybrid nanofluid
    Samal, Sangram Kumar
    Moharana, Manoj Kumar
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2021, 143 (06) : 4131 - 4148
  • [38] Magnetohydrodynamics Mixed Convection Effects on Hybrid Nanofluid Heat Transfer and Entropy Generation
    Samadder, Mandira
    Ray, Rajendra K.
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2025,
  • [39] NUMERICAL SIMULATION OF ENTROPY GENERATION ANALYSIS OF MHD HYBRID-NANOFLUID FLOW WITH NONLINEAR THERMAL RADIATION AND MELTING HEAT TRANSFER
    Kumar, Manjeet
    Kaswan, Pradeep
    Kumari, Manjeet
    SPECIAL TOPICS & REVIEWS IN POROUS MEDIA-AN INTERNATIONAL JOURNAL, 2022, 13 (06) : 1 - 15
  • [40] Entropy generation analysis of MHD convection flow of hybrid nanofluid in a wavy enclosure with heat generation and thermal radiation
    Hussain, Syed M.
    Parveen, Rujda
    Katbar, Nek Muhammad
    Rehman, Sadique
    Abd-Elmonem, Assmaa
    Abdalla, Nesreen Sirelkhtam Elmki
    Ahmad, Hijaz
    Qureshi, Muhammad Amer
    Jamshed, Wasim
    Amjad, Ayesha
    Ibrahim, Rabha W.
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2024, 63 (01)