The impact of concentration in electrolyte on ammonia removal in flow-electrode capacitive deionization system

被引:30
|
作者
Fang, Kuo [1 ]
Peng, Fei [1 ,2 ]
San, Erfu [1 ]
Wang, Kaijun [1 ]
机构
[1] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China
[2] China Univ Geosci, Sch Water Resources & Environm, Beijing 100083, Peoples R China
关键词
Flow-electrode capacitive deionization; Ammonia removal and recovery; Concentration polarization; Concentration factor; MUNICIPAL WASTE-WATER; DESALINATION PERFORMANCE; PHOSPHORUS RECOVERY; ENERGY EFFICIENCY; NITROGEN; TRANSPORT; WORLD; PURIFICATION; VOLTAGE;
D O I
10.1016/j.seppur.2020.117337
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Flow-electrode capacitive deionization (FCDI) technology has been demonstrated to be a promising approach for ammonia removal and recovery. The flow-electrode, where adsorption and desorption occur, is one of the most significant parts in FCDI cells. However, in previous studies, the influence of concentrations in the electrolyte was not well understood, which greatly influenced system performances. In this study, we initially evaluated FCDI performance by using electrolytes containing different amounts of activated carbon (AC), as well as initial ammonium concentrations. Results indicated that compared to concentration factors (CFs), the effect of AC contents on the deionization process was almost neglectable. To achieve efficient ammonia removal and enrichment, initial CF below 10 and refreshment of flow-electrode when CF exceeded 100 were recommended. Further experiments indicated that the poor system performance under high initial CF was caused by concentration polarization and ion back diffusion. The long-term experiment confirmed the above conclusion. Besides, a high concentration of 5600 mg.L-1 was gained for ammonia recovery. This study demonstrated that the concentration in the electrolyte needs to be considered carefully to maintain the system in an efficient and economic state.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Effective and continuous removal of Cr(VI) from brackish wastewater by flow-electrode capacitive deionization (FCDI)
    Dong, Yi
    Xing, Wenle
    Luo, Kunyue
    Zhang, Jing
    Yu, Jiaqi
    Jin, Wanwan
    Wang, Jiajia
    Tang, Wangwang
    Journal of Cleaner Production, 2021, 326
  • [42] Selection and optimization of carbon-based electrode materials for flow-electrode capacitive deionization
    Zhang, Wanni
    Xue, Wenchao
    Xiao, Kang
    Visvanathan, Chettiyappan
    Tang, Jialing
    Li, Lu
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 315
  • [43] Titanium (IV) hydroxide-modified biochar electrode for efficient and selective fluorine removal by flow-electrode capacitive deionization
    Xu, Bin
    Han, Zilong
    Gan, Yonghai
    Zhen, Hongcen
    Li, Zhe
    Luo, Jun
    Jiang, Kaixiang
    Ji, Changhai
    Yang, Wenzhong
    Lu, Xinzhe
    Ji, Rongting
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 361
  • [44] Effective mitigation of ammonia in sewage-sludge-derived fermentation liquid using flow-electrode capacitive deionization
    Sun, Huimin
    Zhang, Xuedong
    Zheng, Zhiyong
    Cui, Minhua
    Liu, Hongbo
    Wu, Ping
    Liu, He
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2023, 325
  • [45] Novel flow-electrode capacitive deionization system employing modified MOF-derived carbon electrodes for metal ion removal
    Zhao, Yan
    Song, Tianwen
    Fan, Xinyu
    Yang, Dahan
    Qian, Guangsheng
    DESALINATION, 2024, 585
  • [46] Enhancing Brackish Water Desalination using Magnetic Flow-electrode Capacitive Deionization
    Xu, Longqian
    Peng, Shuai
    Mao, Yunfeng
    Zong, Yang
    Zhang, Xiaomeng
    Wu, Deli
    Water Research, 2022, 216
  • [47] Towards long-term operation of flow-electrode capacitive deionization (FCDI): Optimization of operating parameters and regeneration of flow-electrode
    Zhang, Wanni
    Xue, Wenchao
    Zhang, Chunpeng
    Xiao, Kang
    HELIYON, 2024, 10 (02)
  • [48] Lignin-derived Porous and Microcrystalline Carbon for Flow-Electrode Capacitive Deionization
    Deng, Hai
    Chen, Xiangfeng
    Tan, Yuyun
    Liao, Yuanyuan
    Yao, Lei
    Deng, Libo
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2021, 16 (02): : 1 - 12
  • [49] Plate-Shaped Graphite for Improved Performance of Flow-Electrode Capacitive Deionization
    Yang, SeungCheol
    Park, Hong-ran
    Yoo, Jungjoon
    Kim, Hanki
    Choi, Jiyeon
    Han, Moon Hee
    Kim, Dong Kook
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (13) : E480 - E488
  • [50] Comprehensive Electrochemical Impedance Spectroscopy Study of Flow-Electrode Capacitive Deionization Cells
    Kim, Nahyun
    Park, Juyeon
    Cho, Younghyun
    Yoo, Chung-Yul
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2023, 57 (23) : 8808 - 8817