The impact of concentration in electrolyte on ammonia removal in flow-electrode capacitive deionization system

被引:30
|
作者
Fang, Kuo [1 ]
Peng, Fei [1 ,2 ]
San, Erfu [1 ]
Wang, Kaijun [1 ]
机构
[1] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China
[2] China Univ Geosci, Sch Water Resources & Environm, Beijing 100083, Peoples R China
关键词
Flow-electrode capacitive deionization; Ammonia removal and recovery; Concentration polarization; Concentration factor; MUNICIPAL WASTE-WATER; DESALINATION PERFORMANCE; PHOSPHORUS RECOVERY; ENERGY EFFICIENCY; NITROGEN; TRANSPORT; WORLD; PURIFICATION; VOLTAGE;
D O I
10.1016/j.seppur.2020.117337
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Flow-electrode capacitive deionization (FCDI) technology has been demonstrated to be a promising approach for ammonia removal and recovery. The flow-electrode, where adsorption and desorption occur, is one of the most significant parts in FCDI cells. However, in previous studies, the influence of concentrations in the electrolyte was not well understood, which greatly influenced system performances. In this study, we initially evaluated FCDI performance by using electrolytes containing different amounts of activated carbon (AC), as well as initial ammonium concentrations. Results indicated that compared to concentration factors (CFs), the effect of AC contents on the deionization process was almost neglectable. To achieve efficient ammonia removal and enrichment, initial CF below 10 and refreshment of flow-electrode when CF exceeded 100 were recommended. Further experiments indicated that the poor system performance under high initial CF was caused by concentration polarization and ion back diffusion. The long-term experiment confirmed the above conclusion. Besides, a high concentration of 5600 mg.L-1 was gained for ammonia recovery. This study demonstrated that the concentration in the electrolyte needs to be considered carefully to maintain the system in an efficient and economic state.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Comparison of current collector architectures for Flow-electrode Capacitive Deionization
    Koller, Niklas
    Perrey, Mila
    Brueckner, Lantz K.
    Schafer, Philipp
    Werner, Sebastian
    Linnartz, Christian J.
    Wessling, Matthias
    DESALINATION, 2024, 582
  • [22] A brief review on the recent achievements in flow-electrode capacitive deionization
    Ashrafizadeh, Seyed Nezameddin
    Ganjizade, Ardalan
    Navapour, Amin
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2021, 38 (01) : 1 - 7
  • [23] A brief review on the recent achievements in flow-electrode capacitive deionization
    Seyed Nezameddin Ashrafizadeh
    Ardalan Ganjizade
    Amin Navapour
    Korean Journal of Chemical Engineering, 2021, 38 : 1 - 7
  • [24] Experimental study on the structure of spacer in a flow-electrode capacitive deionization
    Nikfar, Majid
    Alemrajabi, Ali Akbar
    Choo, KoYeon
    Youn, Youngjik
    Kim, Dong Kook
    DESALINATION AND WATER TREATMENT, 2020, 184 : 86 - 93
  • [25] Electrochemical analysis of slurry electrodes for flow-electrode capacitive deionization
    Choo, Ko Yeon
    Yoo, Chung Yul
    Han, Moon Hee
    Kim, Dong Kook
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2017, 806 : 50 - 60
  • [26] Magnetic array for efficient and stable Flow-electrode capacitive deionization
    Xu, Longqian
    Tang, Liang
    Peng, Shuai
    Mao, Yunfeng
    Wu, Deli
    CHEMICAL ENGINEERING JOURNAL, 2022, 446
  • [27] Recent development and future challenges of flow-electrode capacitive deionization
    Wang Q.
    Fang K.
    He C.
    Wang K.
    Huagong Xuebao/CIESC Journal, 2022, 73 (03): : 975 - 989
  • [28] Membrane-spacer assembly for flow-electrode capacitive deionization
    Lee, Ki Sook
    Cho, Younghyun
    Choo, Ko Yeon
    Yang, SeungCheol
    Han, Moon Hee
    Kim, Dong Kook
    APPLIED SURFACE SCIENCE, 2018, 433 : 437 - 442
  • [29] Enhanced nitrate removal from groundwater using a conductive spacer in flow-electrode capacitive deionization
    Guo, Hongjie
    Wei, Qiang
    Wu, Yangyang
    Qiu, Wei
    Li, Hongliang
    Zhang, Changyong
    CHINESE CHEMICAL LETTERS, 2024, 35 (08)
  • [30] Removal and recovery of phosphorus from low-strength wastewaters by flow-electrode capacitive deionization
    Zhang, Jing
    Tang, Lin
    Tang, Wangwang
    Zhong, Yu
    Luo, Kunyue
    Duan, Mengbiao
    Xing, Wenle
    Liang, Jie
    SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 237