Unnormalized optimal transport

被引:34
|
作者
Gangbo, Wilfrid [1 ]
Li, Wuchen [1 ]
Osher, Stanley [1 ]
Puthawala, Michael [1 ]
机构
[1] Univ Calif Los Angeles, Math Dept, Los Angeles, CA 90095 USA
关键词
Optimal transport; Unnormalized density space; Unnormalized Monge-Ampere equation; DISTANCE;
D O I
10.1016/j.jcp.2019.108940
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose an extension of the computational fluid mechanics approach to the Monge-Kantorovich mass transfer problem, which was developed by Benamou-Brenier in [4]. Our extension allows optimal transfer of unnormalized and unequal masses. We obtain a oneparameter family of simple modifications of the formulation in [4]. This leads us to a new Monge-Ampere type equation and a new Kantorovich duality formula. These can be solved efficiently by, for example, the Chambolle-Pock primal-dual algorithm [6]. This solution to the extended mass transfer problem gives us a simple metric for computing the distance between two unnormalized densities. The L-1 version of this metric was shown in [25] (which is a precursor of our work here) to have desirable properties. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Constrained Optimal Transport
    Ekren, Ibrahim
    Soner, H. Mete
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 227 (03) : 929 - 965
  • [32] On Quantum Optimal Transport
    Sam Cole
    Michał Eckstein
    Shmuel Friedland
    Karol Życzkowski
    Mathematical Physics, Analysis and Geometry, 2023, 26
  • [33] Adaptive optimal transport
    Essid, Montacer
    Laefer, Debra F.
    Tabak, Esteban G.
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2019, 8 (04) : 789 - 816
  • [34] Optimal Transport of Maps
    Jung, Woochul
    Morales, Carlos
    Wen, Xiao
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2025, 204 (02)
  • [35] Computational Optimal Transport
    Peyre, Gabriel
    Cuturi, Marco
    FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2019, 11 (5-6): : 355 - 607
  • [36] INVERSE OPTIMAL TRANSPORT
    Stuart, Andrew M.
    Wolfram, Marie-Therese
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2020, 80 (01) : 599 - 619
  • [37] SUPERVISED OPTIMAL TRANSPORT
    Cang, Zixuan
    Nie, Qing
    Zhao, Yanxiang
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2022, 82 (05) : 1851 - 1877
  • [38] INVERSE OPTIMAL TRANSPORT
    Stuart, Andrew M.
    Wolfram, Marie-Therese
    arXiv, 2019,
  • [39] On Quantum Optimal Transport
    Cole, Sam
    Eckstein, Michal
    Friedland, Shmuel
    Zyczkowski, Karol
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2023, 26 (02)
  • [40] Lectures on Optimal Transport
    THORPE, M. A. T. T. H. E. W.
    SIAM REVIEW, 2022, 64 (02) : 509 - 510