Unnormalized optimal transport

被引:34
|
作者
Gangbo, Wilfrid [1 ]
Li, Wuchen [1 ]
Osher, Stanley [1 ]
Puthawala, Michael [1 ]
机构
[1] Univ Calif Los Angeles, Math Dept, Los Angeles, CA 90095 USA
关键词
Optimal transport; Unnormalized density space; Unnormalized Monge-Ampere equation; DISTANCE;
D O I
10.1016/j.jcp.2019.108940
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose an extension of the computational fluid mechanics approach to the Monge-Kantorovich mass transfer problem, which was developed by Benamou-Brenier in [4]. Our extension allows optimal transfer of unnormalized and unequal masses. We obtain a oneparameter family of simple modifications of the formulation in [4]. This leads us to a new Monge-Ampere type equation and a new Kantorovich duality formula. These can be solved efficiently by, for example, the Chambolle-Pock primal-dual algorithm [6]. This solution to the extended mass transfer problem gives us a simple metric for computing the distance between two unnormalized densities. The L-1 version of this metric was shown in [25] (which is a precursor of our work here) to have desirable properties. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] SYNTHESIS OF UNNORMALIZED RELATIONS INCORPORATING MORE MEANING
    KAMBAYASHI, Y
    TANAKA, K
    TAKEDA, K
    INFORMATION SCIENCES, 1983, 29 (2-3) : 201 - 247
  • [22] PSpice simulation of normalized and unnormalized varistor tests
    Kubik, Zdenek
    Skala, Jiri
    2011 INTERNATIONAL CONFERENCE ON APPLIED ELECTRONICS (AE), 2011,
  • [23] Imputation Estimators for Unnormalized Models with Missing Data
    Uehara, Masatoshi
    Matsuda, Takeru
    Kim, Jae Kwang
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108
  • [24] Meta Optimal Transport
    Amos, Brandon
    Luise, Giulia
    Cohen, Samuel
    Redko, Ievgen
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202 : 791 - 813
  • [25] Discriminator optimal transport
    Tanaka, Akinori
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [26] THE DIRECTIONAL OPTIMAL TRANSPORT
    Nutz, Marcel
    Wang, Ruodu
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (02): : 1400 - 1420
  • [27] Optimal Transport on Networks
    Zhou H.
    IEEE Control Systems, 2021, 41 (04) : 70 - 81
  • [28] PRECONDITIONING OF OPTIMAL TRANSPORT
    Kuang, Max
    Tabak, Esteban G.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (04): : A1793 - A1810
  • [29] Constrained Optimal Transport
    Ibrahim Ekren
    H. Mete Soner
    Archive for Rational Mechanics and Analysis, 2018, 227 : 929 - 965
  • [30] Structured Optimal Transport
    Alvarez-Melis, David
    Jaakkola, Tommi S.
    Jegelka, Stefanie
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84