Sufficient dimension reduction and graphics in regression

被引:21
|
作者
Chiaromonte, F
Cook, RD
机构
[1] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
[2] Univ Minnesota, Sch Stat, Dept Appl Stat, St Paul, MN 55108 USA
关键词
sufficient dimension reduction; graphical displays; regression analysis;
D O I
10.1023/A:1022411301790
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we review, consolidate and extend a theory for sufficient dimension reduction in regression settings. This theory provides a powerful context for the construction, characterization and interpretation of low-dimensional displays of the data, and allows us to turn graphics into a consistent and theoretically motivated methodological body. In this spirit, we propose an iterative graphical procedure for estimating the meta-parameter which lies at the core of sufficient dimension reduction; namely, the central dimension-reduction subspace.
引用
收藏
页码:768 / 795
页数:28
相关论文
共 50 条
  • [41] Sufficient Dimension Folding for Regression Mean Function
    Xue, Yuan
    Yin, Xiangrong
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2014, 23 (04) : 1028 - 1043
  • [42] Sufficient Dimension Reduction for Censored Regressions
    Lu, Wenbin
    Li, Lexin
    BIOMETRICS, 2011, 67 (02) : 513 - 523
  • [43] EFFICIENT ESTIMATION IN SUFFICIENT DIMENSION REDUCTION
    Ma, Yanyuan
    Zhu, Liping
    ANNALS OF STATISTICS, 2013, 41 (01): : 250 - 268
  • [44] Sufficient dimension reduction with missing predictors
    Li, Lexin
    Lu, Wenbin
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (482) : 822 - 831
  • [45] Sufficient dimension reduction with additional information
    Hung, Hung
    Liu, Chih-Yen
    Lu, Henry Horng-Shing
    BIOSTATISTICS, 2016, 17 (03) : 405 - 421
  • [46] Sufficient Dimension Reduction for Censored Predictors
    Tomassi, Diego
    Forzani, Liliana
    Bura, Efstathia
    Pfeiffer, Ruth
    BIOMETRICS, 2017, 73 (01) : 220 - 231
  • [47] On hierarchical clustering in sufficient dimension reduction
    Yoo, Chaeyeon
    Yoo, Younju
    Um, Hye Yeon
    Yoo, Jae Keun
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2020, 27 (04) : 431 - 443
  • [48] Sufficient dimension reduction for compositional data
    Tomassi, Diego
    Forzani, Liliana
    Duarte, Sabrina
    Pfeiffer, Ruth M.
    BIOSTATISTICS, 2021, 22 (04) : 687 - 705
  • [49] A unified approach to sufficient dimension reduction
    Xue, Yuan
    Wang, Qin
    Yin, Xiangrong
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2018, 197 : 168 - 179
  • [50] SUFFICIENT DIMENSION REDUCTION FOR LONGITUDINAL DATA
    Bi, Xuan
    Qu, Annie
    STATISTICA SINICA, 2015, 25 (02) : 787 - 807