Sufficient dimension reduction and graphics in regression

被引:21
|
作者
Chiaromonte, F
Cook, RD
机构
[1] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
[2] Univ Minnesota, Sch Stat, Dept Appl Stat, St Paul, MN 55108 USA
关键词
sufficient dimension reduction; graphical displays; regression analysis;
D O I
10.1023/A:1022411301790
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we review, consolidate and extend a theory for sufficient dimension reduction in regression settings. This theory provides a powerful context for the construction, characterization and interpretation of low-dimensional displays of the data, and allows us to turn graphics into a consistent and theoretically motivated methodological body. In this spirit, we propose an iterative graphical procedure for estimating the meta-parameter which lies at the core of sufficient dimension reduction; namely, the central dimension-reduction subspace.
引用
收藏
页码:768 / 795
页数:28
相关论文
共 50 条
  • [21] Sufficient dimension reduction via inverse regression: A minimum discrepancy approach
    Cook, RD
    Ni, LQ
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (470) : 410 - 428
  • [22] On expectile-assisted inverse regression estimation for sufficient dimension reduction
    Soale, Abdul-Nasah
    Dong, Yuexiao
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2021, 213 : 80 - 92
  • [23] Sufficient dimension reduction for the conditional mean with a categorical predictor in multivariate regression
    Yoo, Jae Keun
    JOURNAL OF MULTIVARIATE ANALYSIS, 2008, 99 (08) : 1825 - 1839
  • [24] Principal weighted logistic regression for sufficient dimension reduction in binary classification
    Kim, Boyoung
    Shin, Seung Jun
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2019, 48 (02) : 194 - 206
  • [25] Generalized kernel-based inverse regression methods for sufficient dimension reduction
    Xie, Chuanlong
    Zhu, Lixing
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 150
  • [26] A novel moment-based sufficient dimension reduction approach in multivariate regression
    Yoo, Jae Keun
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (07) : 3843 - 3851
  • [27] On estimating regression-based causal effects using sufficient dimension reduction
    Luo, Wei
    Zhu, Yeying
    Ghosh, Debashis
    BIOMETRIKA, 2017, 104 (01) : 51 - 65
  • [28] Asymptotic results for nonparametric regression estimators after sufficient dimension reduction estimation
    Forzani, Liliana
    Rodriguez, Daniela
    Sued, Mariela
    TEST, 2024, : 987 - 1013
  • [29] Tensor sufficient dimension reduction
    Zhong, Wenxuan
    Xing, Xin
    Suslick, Kenneth
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2015, 7 (03): : 178 - 184
  • [30] Transformed sufficient dimension reduction
    Wang, T.
    Guo, X.
    Zhu, L.
    Xu, P.
    BIOMETRIKA, 2014, 101 (04) : 815 - 829