q,k-generalized gamma and beta functions

被引:64
|
作者
Díaz, R
Teruel, C
机构
[1] Inst Venezolano Invest Cient, Caracas, Venezuela
[2] Cent Univ Venezuela, Caracas, Venezuela
关键词
D O I
10.2991/jnmp.2005.12.1.10
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the q,k-generalized Pochhammer symbol. We construct Gamma(q,k) and B-q,B-k, the q,k-generalied gamma and beta functions, and show that they satisfy properties that generalize those satisfied by the classical gamma and beta functions. Moreover, we provide integral representations for Gamma(q,k) and B-q,B-k.
引用
收藏
页码:118 / 134
页数:17
相关论文
共 50 条
  • [31] On some properties of k-generalized Fibonacci numbers
    Ozdemir, Halim
    Karakaya, Sinan
    MATHEMATICAL COMMUNICATIONS, 2024, 29 (02) : 193 - 202
  • [32] Diophantine Triples and k-Generalized Fibonacci Sequences
    Fuchs, Clemens
    Hutle, Christoph
    Luca, Florian
    Szalay, Laszlo
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (03) : 1449 - 1465
  • [33] On k-generalized Lucas sequence with its triangle
    Acikel, Abdullah
    Amrouche, Said
    Belbachir, Hacene
    Irmak, Nurettin
    TURKISH JOURNAL OF MATHEMATICS, 2023, 47 (04) : 1129 - 1143
  • [34] An Equation Related to k-Generalized Fibonacci Numbers
    Marques, Diego
    Trojovsky, Pavel
    UTILITAS MATHEMATICA, 2016, 101 : 79 - 89
  • [35] On k-generalized Fibonacci numbers with negative indices
    Petho, Attila
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2021, 98 (3-4): : 401 - 418
  • [36] The Binet formula for the k-generalized Fibonacci numbers
    Yang, Sheng-liang
    Zhang, Hui-ting
    ARS COMBINATORIA, 2014, 116 : 193 - 204
  • [37] On Decay Properties of Solutions of the k-Generalized KdV Equation
    Pedro Isaza
    Felipe Linares
    Gustavo Ponce
    Communications in Mathematical Physics, 2013, 324 : 129 - 146
  • [38] On Defining the (p, q, k)-Generalized Gamma Function
    Ege, Inci
    NOTE DI MATEMATICA, 2019, 39 (01): : 107 - 116
  • [39] A Simplified Binet Formula for k-Generalized Fibonacci Numbers
    Dresden, Gregory P. B.
    Du, Zhaohui
    JOURNAL OF INTEGER SEQUENCES, 2014, 17 (04)
  • [40] BOUNDS FOR K-GAMMA AND K-BETA FUNCTIONS
    Kokologiannaki, C. G.
    Sourla, V. D.
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2013, 4 (03): : 1 - 5