On k-generalized Lucas sequence with its triangle

被引:0
|
作者
Acikel, Abdullah [1 ]
Amrouche, Said [2 ]
Belbachir, Hacene [2 ,3 ]
Irmak, Nurettin [4 ]
机构
[1] Hatay Mustafa Kemal Univ, Hassa Vocat Sch, Antakya, Turkiye
[2] USTHB, Fac Math, RECITS Lab, POB 32, El Alia, Bab Ezzouar Alg, Algeria
[3] Sci & Tech Informat Res Ctr, Algiers, Algeria
[4] Konya Tech Univ, Engn & Nat Sci Fac, Dept Engn Basic Sci, Konya, Turkiye
关键词
k- generalized Lucas sequence; arithmetic triangle; recurrence relation; bi s nomial coefficient;
D O I
10.55730/1300-0098.3416
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate several identities of k -generalized Lucas numbers with k -generalized Fibonacci numbers. We also establish a link between generalized s -Lucas triangle and bi s nomial coefficients given by the coefficients of the development of a power of (1 + x + x2 + center dot center dot center dot + xs), with s is an element of N.
引用
收藏
页码:1129 / 1143
页数:16
相关论文
共 50 条
  • [1] On Perfect Powers in k-Generalized Pell-Lucas Sequence
    Siar, Z.
    Keskin, R.
    MATHEMATICAL NOTES, 2023, 114 (5-6) : 936 - 948
  • [2] On the representation of k-generalized Fibonacci and Lucas numbers
    Öcal, AA
    Tuglu, N
    Altinisik, E
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 170 (01) : 584 - 596
  • [3] On the largest prime factor of the k-generalized Lucas numbers
    Batte, Herbert
    Luca, Florian
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (02):
  • [4] THE k-GENERALIZED LUCAS NUMBERS CLOSE TO A POWER OF 2
    Acikel, Abdullah
    Irmak, Nurettin
    Szalay, Laszlo
    MATHEMATICA SLOVACA, 2023, 73 (04) : 871 - 882
  • [5] k-Generalized Lucas numbers, perfect powers and the problem of Pillai
    Faye, Bernadette
    Garcia, Jonathan
    Gomez, Carlos A.
    MONATSHEFTE FUR MATHEMATIK, 2024, 204 (04): : 839 - 885
  • [6] ON PERFECT POWERS IN k-GENERALIZED PELL SEQUENCE
    Siar, Zafer
    Keskin, Refik
    Oztas, Elif Segah
    MATHEMATICA BOHEMICA, 2023, 148 (04): : 507 - 518
  • [7] On the zero-multiplicity of the k-generalized Fibonacci sequence
    Garcia, Jonathan
    Gomez, Carlos A.
    Luca, Florian
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2020, 26 (11-12) : 1564 - 1578
  • [8] A note on k-generalized projections
    Lebtahi, Leila
    Thome, Nestor
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 420 (2-3) : 572 - 575
  • [9] ON THE k-GENERALIZED PADOVAN NUMBERS
    Lee, Gwangyeon
    UTILITAS MATHEMATICA, 2018, 108 : 185 - 194
  • [10] On the K-generalized Fibonacci matrix Q(k)(*)
    Lee, GY
    Lee, SG
    Shin, HG
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 251 : 73 - 88