On k-generalized Lucas sequence with its triangle

被引:0
|
作者
Acikel, Abdullah [1 ]
Amrouche, Said [2 ]
Belbachir, Hacene [2 ,3 ]
Irmak, Nurettin [4 ]
机构
[1] Hatay Mustafa Kemal Univ, Hassa Vocat Sch, Antakya, Turkiye
[2] USTHB, Fac Math, RECITS Lab, POB 32, El Alia, Bab Ezzouar Alg, Algeria
[3] Sci & Tech Informat Res Ctr, Algiers, Algeria
[4] Konya Tech Univ, Engn & Nat Sci Fac, Dept Engn Basic Sci, Konya, Turkiye
关键词
k- generalized Lucas sequence; arithmetic triangle; recurrence relation; bi s nomial coefficient;
D O I
10.55730/1300-0098.3416
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate several identities of k -generalized Lucas numbers with k -generalized Fibonacci numbers. We also establish a link between generalized s -Lucas triangle and bi s nomial coefficients given by the coefficients of the development of a power of (1 + x + x2 + center dot center dot center dot + xs), with s is an element of N.
引用
收藏
页码:1129 / 1143
页数:16
相关论文
共 50 条
  • [31] ON THE DISCRIMINANT OF THE k-GENERALIZED FIBONACCI POLYNOMIAL, II
    Luca, Florian
    FIBONACCI QUARTERLY, 2024, 62 (03): : 193 - 200
  • [32] Multiplicative Independence in k-Generalized Fibonacci Sequences
    Gomez Ruiz, Carlos Alexis
    Luca, Florian
    LITHUANIAN MATHEMATICAL JOURNAL, 2016, 56 (04) : 503 - 517
  • [33] q,k-generalized gamma and beta functions
    Díaz, R
    Teruel, C
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2005, 12 (01) : 118 - 134
  • [34] On some properties of k-generalized Fibonacci numbers
    Ozdemir, Halim
    Karakaya, Sinan
    MATHEMATICAL COMMUNICATIONS, 2024, 29 (02) : 193 - 202
  • [35] Diophantine Triples and k-Generalized Fibonacci Sequences
    Fuchs, Clemens
    Hutle, Christoph
    Luca, Florian
    Szalay, Laszlo
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (03) : 1449 - 1465
  • [36] An Equation Related to k-Generalized Fibonacci Numbers
    Marques, Diego
    Trojovsky, Pavel
    UTILITAS MATHEMATICA, 2016, 101 : 79 - 89
  • [37] q,k-Generalized Gamma and Beta Functions
    Rafael Díaz
    Carolina Teruel
    Journal of Nonlinear Mathematical Physics, 2005, 12 : 118 - 134
  • [38] On k-generalized Fibonacci numbers with negative indices
    Petho, Attila
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2021, 98 (3-4): : 401 - 418
  • [39] The Binet formula for the k-generalized Fibonacci numbers
    Yang, Sheng-liang
    Zhang, Hui-ting
    ARS COMBINATORIA, 2014, 116 : 193 - 204
  • [40] On Decay Properties of Solutions of the k-Generalized KdV Equation
    Pedro Isaza
    Felipe Linares
    Gustavo Ponce
    Communications in Mathematical Physics, 2013, 324 : 129 - 146