q,k-generalized gamma and beta functions

被引:64
|
作者
Díaz, R
Teruel, C
机构
[1] Inst Venezolano Invest Cient, Caracas, Venezuela
[2] Cent Univ Venezuela, Caracas, Venezuela
关键词
D O I
10.2991/jnmp.2005.12.1.10
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the q,k-generalized Pochhammer symbol. We construct Gamma(q,k) and B-q,B-k, the q,k-generalied gamma and beta functions, and show that they satisfy properties that generalize those satisfied by the classical gamma and beta functions. Moreover, we provide integral representations for Gamma(q,k) and B-q,B-k.
引用
收藏
页码:118 / 134
页数:17
相关论文
共 50 条
  • [1] q,k-Generalized Gamma and Beta Functions
    Rafael Díaz
    Carolina Teruel
    Journal of Nonlinear Mathematical Physics, 2005, 12 : 118 - 134
  • [2] On the K-generalized Fibonacci matrix Q(k)(*)
    Lee, GY
    Lee, SG
    Shin, HG
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 251 : 73 - 88
  • [3] On the K-generalized Fibonacci matrix Q*k
    Lee, G.-Y.
    Lee, S.-G.
    Shin, H.-G.
    Linear Algebra and Its Applications, 1997, 251
  • [4] INTEGRAL TRANSFORMS OF THE k-GENERALIZED MITTAG-LEFFLER FUNCTION E-k,alpha,beta(gamma,tau)(z)
    Saxena, Ram K.
    Daiya, Jitendra
    Singh, Abhishek
    MATEMATICHE, 2014, 69 (02): : 7 - 16
  • [5] A note on k-generalized projections
    Lebtahi, Leila
    Thome, Nestor
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 420 (2-3) : 572 - 575
  • [6] ON THE k-GENERALIZED PADOVAN NUMBERS
    Lee, Gwangyeon
    UTILITAS MATHEMATICA, 2018, 108 : 185 - 194
  • [7] Path connectivity of k-generalized projectors
    Du, Hong-Ke
    Wang, Wen-Feng
    Duan, Ying-Tao
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 422 (2-3) : 712 - 720
  • [8] Gapsets and the k-generalized Fibonacci sequences
    Almeida Filho, Gilberto B.
    Bernardini, Matheus
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2024, 34 (02) : 227 - 249
  • [9] K-Generalized G-Structures
    Kuzakon V.M.
    Shelekhov A.M.
    Journal of Mathematical Sciences, 2013, 194 (2) : 176 - 181
  • [10] ON THE DISCRIMINANT OF THE k-GENERALIZED FIBONACCI POLYNOMIAL
    Luca, Florian
    FIBONACCI QUARTERLY, 2021, 59 (04): : 298 - 307