A priori error for unilateral contact problems with Lagrange multipliers and isogeometric analysis

被引:10
|
作者
Antolin, Pablo [1 ]
Buffa, Annalisa [2 ]
Fabre, Mathieu [1 ]
机构
[1] EPFL SB MATHICSE MNS, Bat MA,Stn 8, CH-1015 Lausanne, Switzerland
[2] CNR, Ist Matemat Applicata & Tecnol Informat E Magenes, Via Ferrata 1, I-27100 Pavia, Italy
基金
欧洲研究理事会;
关键词
unilateral contact problem; optimal a priori error; inf-sup condition; IGA; mixed IGA method; active set strategy; contact states; FINITE-ELEMENT METHODS; FRICTIONAL CONTACT; 3D; APPROXIMATION; CONVERGENCE; ALGORITHM; NURBS;
D O I
10.1093/imanum/dry041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a unilateral contact problem without friction between a rigid body and a deformable one in the framework of isogeometric analysis. We present the theoretical analysis of the mixed problem. For the displacement, we use the pushforward of a nonuniform rational B-spline space of degree p and for the Lagrange multiplier, the pushforward of a B-spline space of degree p - 2. These choices of space ensure the proof of an inf-sup condition and so on, the stability of the method. We distinguish between contact and noncontact sets to avoid the classical geometrical hypothesis of the contact set. An optimal a priori error estimate is demonstrated without assumption on the unknown contact set. Several numerical examples in two and three dimensions and in small and large deformation frameworks demonstrate the accuracy of the proposed method.
引用
收藏
页码:1627 / 1651
页数:25
相关论文
共 50 条
  • [31] A parametric knot adaptation approach to isogeometric analysis of contact problems
    Bidkhori, Emad
    Hassani, Behrooz
    ENGINEERING WITH COMPUTERS, 2022, 38 (01) : 609 - 630
  • [32] A parametric knot adaptation approach to isogeometric analysis of contact problems
    Emad Bidkhori
    Behrooz Hassani
    Engineering with Computers, 2022, 38 : 609 - 630
  • [33] Strong displacement discontinuities and Lagrange multipliers in the analysis of finite displacement fracture problems
    P. M. A. Areias
    J. M. A. César de Sá
    C. A. Conceição António
    J. A. S. A. O. Carneiro
    V .M. P. Teixeira
    Computational Mechanics, 2004, 35 : 54 - 71
  • [34] Strong displacement discontinuities and Lagrange multipliers in the analysis of finite displacement fracture problems
    Areias, PMA
    de Sá, JMAC
    António, CAC
    Carneiro, JASAO
    Teixeira, VMP
    COMPUTATIONAL MECHANICS, 2004, 35 (01) : 54 - 71
  • [35] BOUNDARY LAGRANGE MULTIPLIERS IN FINITE-ELEMENT METHODS - ERROR ANALYSIS IN NATURAL NORMS
    BARBOSA, HJC
    HUGHES, TJR
    NUMERISCHE MATHEMATIK, 1992, 62 (01) : 1 - 15
  • [36] Asymptotic analysis of unilateral contact problems for linearly elastic shells: Error estimates in the membrane case
    Cao-Rial, M. T.
    Rodriguez-Aros, A.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 48 : 40 - 53
  • [37] A CONTRIBUTION TO THE ANALYSIS OF UNILATERAL CONTACT PROBLEMS WITH FRICTION
    MITSOPOULOU, EN
    DOUDOUMIS, IN
    SOLID MECHANICS ARCHIVES, 1987, 12 (03): : 165 - 186
  • [38] Quasistatic Porous-Thermoelastic Problems: An a Priori Error Analysis
    Baldonedo, Jacobo
    Fernandez, Jose R.
    Lopez-Campos, Jose A.
    MATHEMATICS, 2021, 9 (12)
  • [39] A priori and a posteriori error analysis for semilinear problems in liquid crystals
    Maity, Ruma Rani
    Majumdar, Apala
    Nataraj, Neela
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (06) : 3201 - 3250
  • [40] ITERATIVE AND DIRECT SOLVERS FOR INTERFACE PROBLEMS WITH LAGRANGE MULTIPLIERS
    FISH, J
    BELSKY, V
    PANDHEERADI, M
    COMPUTING SYSTEMS IN ENGINEERING, 1995, 6 (03): : 261 - 273