A priori and a posteriori error analysis for semilinear problems in liquid crystals

被引:0
|
作者
Maity, Ruma Rani [1 ]
Majumdar, Apala [2 ,3 ]
Nataraj, Neela [4 ]
机构
[1] Aalto Univ, Dept Math & Syst Anal, POB 11100, Helsinki 00076, Finland
[2] Univ Strathclyde, Dept Math & Stat, 16 Richmond St, Glasgow G1 1XQ, Scotland
[3] Indian Inst Technol, Mumbai 400076, India
[4] Indian Inst Technol, Dept Math, Mumbai 400076, India
关键词
Conforming FEM; Nitsche's method; discontinuous Galerkin and WOPSIP methods; a priori and a posteriori error analysis; non-linear elliptic PDEs; non-homogeneous Dirichlet boundary conditions; nematic liquid crystals; ferronematics; FINITE-ELEMENT METHODS; STOKES EQUATIONS; NITSCHES;
D O I
10.1051/m2an/2023056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop a unified framework for the a priori and a posteriori error control of different lowest-order finite element methods for approximating the regular solutions of systems of partial differential equations under a set of hypotheses. The systems involve cubic nonlinearities in lower order terms, non-homogeneous Dirichlet boundary conditions, and the results are established under minimal regularity assumptions on the exact solution. The key contributions include (i) results for existence and local uniqueness of the discrete solutions using Newton-Kantorovich theorem, (ii) a priori error estimates in the energy norm, and (iii) a posteriori error estimates that steer the adaptive refinement process. The results are applied to conforming, Nitsche, discontinuous Galerkin, and weakly over penalized symmetric interior penalty schemes for variational models of ferronematics and nematic liquid crystals. The theoretical estimates are corroborated by substantive numerical results.
引用
收藏
页码:3201 / 3250
页数:50
相关论文
共 50 条
  • [1] A priori and a posteriori error analyses in the study of viscoelastic problems
    Fernandez, J. R.
    Hild, P.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 225 (02) : 569 - 580
  • [2] A posteriori error estimates for semilinear optimal control problems
    Allendes, Alejandro
    Fuica, Francisco
    Otarola, Enrique
    Quero, Daniel
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2021, 55 (05) : 2293 - 2322
  • [3] A Posteriori Error Estimates for Semilinear Boundary Control Problems
    Chen, Yanping
    Lu, Zuliang
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XIX, 2011, 78 : 455 - +
  • [4] A posteriori error analysis of semilinear parabolic interface problems using elliptic reconstruction
    Sen Gupta, Jhuma
    Sinha, Rajen Kumar
    APPLICABLE ANALYSIS, 2018, 97 (04) : 552 - 570
  • [5] A posteriori error analysis for discontinuous Galerkin methods for time discrete semilinear parabolic problems
    Sabawi, Mohammad
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, (46): : 283 - 301
  • [6] A priori and a posteriori error analysis of an unfitted HDG method for semi-linear elliptic problems
    Sanchez, Nestor
    Sanchez-Vizuet, Tonatiuh
    Solano, Manuel E.
    NUMERISCHE MATHEMATIK, 2021, 148 (04) : 919 - 958
  • [7] A priori and a posteriori error analysis for discontinuous Galerkin finite element approximations of biharmonic eigenvalue problems
    Wang, Liang
    Xiong, Chunguang
    Wu, Huibin
    Luo, Fusheng
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (5-6) : 2623 - 2646
  • [8] A priori and a posteriori error analysis for discontinuous Galerkin finite element approximations of biharmonic eigenvalue problems
    Liang Wang
    Chunguang Xiong
    Huibin Wu
    Fusheng Luo
    Advances in Computational Mathematics, 2019, 45 : 2623 - 2646
  • [9] A priori and a posteriori error analysis for the mixed discontinuous Galerkin finite element approximations of the biharmonic problems
    Xiong, Chunguang
    Becker, Roland
    Luo, Fusheng
    Ma, Xiuling
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (01) : 318 - 353
  • [10] A priori and a posteriori error analysis of an unfitted HDG method for semi-linear elliptic problems
    Nestor Sánchez
    Tonatiuh Sánchez-Vizuet
    Manuel E. Solano
    Numerische Mathematik, 2021, 148 : 919 - 958