A priori and a posteriori error analysis of an unfitted HDG method for semi-linear elliptic problems

被引:3
|
作者
Sanchez, Nestor [1 ,2 ]
Sanchez-Vizuet, Tonatiuh [3 ,4 ]
Solano, Manuel E. [1 ,2 ]
机构
[1] Univ Concepcion, Fac Ciencias Fis & Matemat, Dept Ingn Matemat, Concepcion, Chile
[2] Univ Concepcion, Ctr Invest Ingn Matemat CI2MA, Concepcion, Chile
[3] NYU, Courant Inst Math Sci, New York, NY USA
[4] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
关键词
GALERKIN METHODS; DISCRETIZATION; EXTENSIONS;
D O I
10.1007/s00211-021-01221-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a priori and a posteriori error analysis of a high order hybridizable discontinuous Galerkin (HDG) method applied to a semi-linear elliptic problem posed on a piecewise curved, non polygonal domain. We approximate Omega by a polygonal subdomain Omega(h) and propose an HDG discretization, which is shown to be optimal under mild assumptions related to the non-linear source term and the distance between the boundaries of the polygonal subdomain Omega(h) and the true domain Omega. Moreover, a local non-linear post-processing of the scalar unknown is proposed and shown to provide an additional order of convergence. A reliable and locally efficient a posteriori error estimator that takes into account the error in the approximation of the boundary data of Omega(h) is also provided.
引用
收藏
页码:919 / 958
页数:40
相关论文
共 50 条
  • [1] A priori and a posteriori error analysis of an unfitted HDG method for semi-linear elliptic problems
    Nestor Sánchez
    Tonatiuh Sánchez-Vizuet
    Manuel E. Solano
    Numerische Mathematik, 2021, 148 : 919 - 958
  • [2] Error Analysis of an Unfitted HDG Method for a Class of Non-linear Elliptic Problems
    Sanchez, Nestor
    Sanchez-Vizuet, Tonatiuh
    Solano, Manuel
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 90 (03)
  • [3] Error Analysis of an Unfitted HDG Method for a Class of Non-linear Elliptic Problems
    Nestor Sánchez
    Tonatiuh Sánchez-Vizuet
    Manuel Solano
    Journal of Scientific Computing, 2022, 90
  • [4] A priori and a posteriori error analyses of an HDG method for the Brinkman problem
    Gatica, Luis F.
    Sequeira, Filander A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (04) : 1191 - 1212
  • [5] Control of error in the homotopy analysis of semi-linear elliptic boundary value problems
    Van Gorder, Robert A.
    NUMERICAL ALGORITHMS, 2012, 61 (04) : 613 - 629
  • [6] Control of error in the homotopy analysis of semi-linear elliptic boundary value problems
    Robert A. Van Gorder
    Numerical Algorithms, 2012, 61 : 613 - 629
  • [7] A LOCALIZED ORTHOGONAL DECOMPOSITION METHOD FOR SEMI-LINEAR ELLIPTIC PROBLEMS
    Henning, Patrick
    Malqvist, Axel
    Peterseim, Daniel
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (05): : 1331 - 1349
  • [8] A priori and computable a posteriori error estimates for an HDG method for the coercive Maxwell equations
    Chen, Huangxin
    Qiu, Weifeng
    Shi, Ke
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 333 : 287 - 310
  • [9] A priori bounds for a class of semi-linear degenerate elliptic equations
    Huang GengGeng
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (09) : 1911 - 1926
  • [10] A priori bounds for a class of semi-linear degenerate elliptic equations
    GengGeng Huang
    Science China Mathematics, 2014, 57 : 1911 - 1926