Short-term prediction of ionospheric peak parameters and TEC by the updated IRI model

被引:1
|
作者
Kishcha, PV [1 ]
机构
[1] IZMIRAN, Inst Terr Magnetism Ionosphere & Radio Wave Propa, Troitsk 142092, Moscow Region, Russia
关键词
D O I
10.1016/S0273-1177(97)00581-4
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Software for predicting ionospheric parameters at mid latitudes is described. This paper demonstrates the principal opportunity using an updated IRI model for accurate short-term prediction. Variations of the quiet level IRI are adjusted by regular measurements of the ionospheric electron density vs. height profile by digital ionosonde during the preceding 3 to 5 quiet days. The second step corrects the F2 layer peak parameters for geomagnetic disturbances by the techniques developed at IZMIRAN. Ionospheric predictions with the proposed software were tested on data from the Warsaw ionosonde for several large geomagnetic storms during 1993. Currently measured real-time ionosonde data is used to improve the prediction of the local electron density for the following 24 hours. (C) 1997 COSPAR. Published by Elsevier Science Ltd.
引用
收藏
页码:1733 / 1740
页数:8
相关论文
共 50 条
  • [41] Regional modeling of ionospheric peak parameters using GNSS data-An update for IRI
    Liang, Wenjing
    Limberger, Marco
    Schmidt, Michael
    Dettmering, Denise
    Hugentobler, Urs
    Bilitza, Dieter
    Jakowski, Norbert
    Hoque, M. Mainul
    Wilken, Volker
    Gerzen, Tatjana
    ADVANCES IN SPACE RESEARCH, 2015, 55 (08) : 1981 - 1993
  • [42] Short-term traffic parameters prediction method based on vector error correction model
    Bing, Qi-Chun
    Yang, Zhao-Sheng
    Zhou, Xi-Yang
    Ma, Ming-Hui
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2015, 45 (04): : 1076 - 1081
  • [43] Short-term estimation of GNSS TEC using a neural network model in Brazil
    Ferreira, Arthur Amaral
    Borges, Renato Alves
    Paparini, Claudia
    Ciraolo, Luigi
    Radicella, Sandro M.
    ADVANCES IN SPACE RESEARCH, 2017, 60 (08) : 1765 - 1776
  • [44] Ionospheric TEC prediction using hybrid method based on ensemble empirical mode decomposition (EEMD) and long short-term memory (LSTM) deep learning model over India
    Nath, S.
    Chetia, B.
    Kalita, S.
    ADVANCES IN SPACE RESEARCH, 2023, 71 (05) : 2307 - 2317
  • [45] Comparisons of Ionospheric Peak Parameters from Radio Occultation Observations and IRI-2016 Model Outputs over China
    Sun F.
    Luo J.
    Xu X.
    Wang H.
    Luo, Jia (jialuo@whu.edu.cn), 2020, Editorial Board of Medical Journal of Wuhan University (45): : 403 - 410
  • [46] Comparison of the ionospheric F peak parameters obtained by PARUS ionosonde with IRI model for the Alma-Ata midlatitude station
    Gordiyenko, G.
    Vodyannikov, V.
    Yakovets, A.
    Litvinov, Yu
    2014 XXXITH URSI GENERAL ASSEMBLY AND SCIENTIFIC SYMPOSIUM (URSI GASS), 2014,
  • [47] Determination of the inland units models parameters for short-term prediction
    Bilewski, Mateusz
    Gucma, Lucjan
    Puszcz, Agnieszka
    SCIENTIFIC JOURNALS OF THE MARITIME UNIVERSITY OF SZCZECIN-ZESZYTY NAUKOWE AKADEMII MORSKIEJ W SZCZECINIE, 2013, 36 (01): : 32 - 37
  • [48] Equatorial F2-peak parameters in the IRI model
    Adeniyi, JO
    Bilitza, D
    Radicella, SM
    Willoughby, AA
    DESCRIPTION OF THE LOW LATITUDE AND EQUATORIAL IONOSPHERE IN THE INTERNATIONAL REFERENCE IONOSPHERE, 2003, 31 (03): : 507 - 512
  • [50] Short-term ionospheric forecasting over Europe
    Dick, MI
    Levy, MF
    Cander, LR
    Kutiev, I
    Muhtarov, P
    IEE NATIONAL CONFERENCE ON ANTENNAS AND PROPAGATION, 1999, (461): : 105 - 107