Short-term prediction of ionospheric peak parameters and TEC by the updated IRI model

被引:1
|
作者
Kishcha, PV [1 ]
机构
[1] IZMIRAN, Inst Terr Magnetism Ionosphere & Radio Wave Propa, Troitsk 142092, Moscow Region, Russia
关键词
D O I
10.1016/S0273-1177(97)00581-4
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Software for predicting ionospheric parameters at mid latitudes is described. This paper demonstrates the principal opportunity using an updated IRI model for accurate short-term prediction. Variations of the quiet level IRI are adjusted by regular measurements of the ionospheric electron density vs. height profile by digital ionosonde during the preceding 3 to 5 quiet days. The second step corrects the F2 layer peak parameters for geomagnetic disturbances by the techniques developed at IZMIRAN. Ionospheric predictions with the proposed software were tested on data from the Warsaw ionosonde for several large geomagnetic storms during 1993. Currently measured real-time ionosonde data is used to improve the prediction of the local electron density for the following 24 hours. (C) 1997 COSPAR. Published by Elsevier Science Ltd.
引用
收藏
页码:1733 / 1740
页数:8
相关论文
共 50 条
  • [21] Hybrid model for long-term prediction of the ionospheric global TEC
    Mukhtarov, P.
    Pancheva, D.
    Andonov, B.
    JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2014, 119 : 1 - 10
  • [22] Prediction of Ionospheric TEC Using RNN During the Indonesia Earthquakes Based on GPS Data and Comparison with the IRI Model
    Mukesh, R.
    Dass, Sarat C.
    Kiruthiga, S.
    Mythili, S.
    Vijay, M.
    Shree, K. Likitha
    Abinesh, M.
    Ambika, T.
    Pooja
    FOURTH CONGRESS ON INTELLIGENT SYSTEMS, VOL 1, CIS 2023, 2024, 868 : 401 - 415
  • [23] Short-term forecast of ionospheric parameters by oblique sounding data
    Grozov, V. P.
    Bubnova, T. V.
    Ilyin, N. V.
    24TH INTERNATIONAL SYMPOSIUM ON ATMOSPHERIC AND OCEAN OPTICS: ATMOSPHERIC PHYSICS, 2018, 10833
  • [24] DIGITAL RECORDING AND SHORT-TERM PREDICTION OF OBLIQUE IONOSPHERIC PROPAGATION
    AMES, JW
    EGAN, RD
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1967, AP15 (03) : 382 - &
  • [25] Short-term regional ionospheric TEC forecast using a hybrid deep learning neural network
    Zhang, Nana
    Tang, Siyu
    Huang, Zhi
    ADVANCES IN SPACE RESEARCH, 2024, 73 (07) : 3772 - 3781
  • [26] Ionospheric single-station TEC short-term forecast using RBF neural network
    Huang, Z.
    Yuan, H.
    RADIO SCIENCE, 2014, 49 (04) : 283 - 292
  • [27] Short-Term Prediction of Coke Pushing Current Peak Based on Improved ARIMA Model
    Wei, Haiyang
    Chen, Luefeng
    Hu, Jie
    Ren, Yi
    Wu, Min
    Pedrycz, Witold
    Hirota, Kaoru
    2023 IEEE 6TH INTERNATIONAL CONFERENCE ON INDUSTRIAL CYBER-PHYSICAL SYSTEMS, ICPS, 2023,
  • [28] A Causal Long Short-Term Memory Sequence to Sequence Model for TEC Prediction Using GNSS Observations
    Kaselimi, Maria
    Voulodimos, Athanasios
    Doulamis, Nikolaos
    Doulamis, Anastasios
    Delikaraoglou, Demitris
    REMOTE SENSING, 2020, 12 (09)
  • [29] The Short-Term Prediction of Low-Latitude Ionospheric Irregularities Leveraging a Hybrid Ensemble Model
    Liu, Hang
    Yang, Pengxin
    Ren, Xiaodong
    Mei, Dengkui
    Le, Xuan
    Zhang, Xiaohong
    Freeshah, Mohamed
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 15
  • [30] Global Mapping of Hourly TEC and Ionospheric Critical Parameters by Using IRI-Plas Optimization
    Cilibas, Onur
    Sezen, Umut
    Arikan, Feza
    Gulyaeva, Tamara
    PROCEEDINGS OF 6TH INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN SPACE TECHNOLOGIES (RAST 2013), 2013, : 735 - 738