Short-term prediction of ionospheric peak parameters and TEC by the updated IRI model

被引:1
|
作者
Kishcha, PV [1 ]
机构
[1] IZMIRAN, Inst Terr Magnetism Ionosphere & Radio Wave Propa, Troitsk 142092, Moscow Region, Russia
关键词
D O I
10.1016/S0273-1177(97)00581-4
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Software for predicting ionospheric parameters at mid latitudes is described. This paper demonstrates the principal opportunity using an updated IRI model for accurate short-term prediction. Variations of the quiet level IRI are adjusted by regular measurements of the ionospheric electron density vs. height profile by digital ionosonde during the preceding 3 to 5 quiet days. The second step corrects the F2 layer peak parameters for geomagnetic disturbances by the techniques developed at IZMIRAN. Ionospheric predictions with the proposed software were tested on data from the Warsaw ionosonde for several large geomagnetic storms during 1993. Currently measured real-time ionosonde data is used to improve the prediction of the local electron density for the following 24 hours. (C) 1997 COSPAR. Published by Elsevier Science Ltd.
引用
收藏
页码:1733 / 1740
页数:8
相关论文
共 50 条
  • [1] Short-term Prediction of Ionospheric TEC Based on ARIMA Model
    Xiaohong ZHANG
    Xiaodong REN
    Fengbo WU
    Qi LU
    Journal of Geodesy and Geoinformation Science, 2019, 2 (01) : 9 - 16
  • [2] Geomagnetically correlated autoregression model for short-term prediction of ionospheric parameters
    Muhtarov, P
    Kutiev, I
    Cander, L
    INVERSE PROBLEMS, 2002, 18 (01) : 49 - 65
  • [3] Regional Short-Term Forecasting of Ionospheric TEC and Scintillation
    Grzesiak, Marcin
    Cesaroni, Claudio
    Spogli, Luca
    De Franceschi, Giorgiana
    Romano, Vincenzo
    RADIO SCIENCE, 2018, 53 (10) : 1254 - 1268
  • [4] Integrated model for short-term forecasting of ionospheric parameters
    Feng, Jing
    Liu, Wen
    Qi, Dongyu
    2014 XXXITH URSI GENERAL ASSEMBLY AND SCIENTIFIC SYMPOSIUM (URSI GASS), 2014,
  • [5] Ionospheric TEC prediction using Long Short-Term Memory deep learning network
    Wen, Zhichao
    Li, Shuhui
    Li, Lihua
    Wu, Bowen
    Fu, Jianqiang
    ASTROPHYSICS AND SPACE SCIENCE, 2021, 366 (01)
  • [6] STUDY OF IONOSPHERIC TEC SHORT-TERM FORECAST MODEL BASED ON COMBINATION METHOD
    Niu, Ruizhao
    Guo, Chengjun
    Zhang, Yiran
    He, Liang
    Mao, Yanling
    2014 12TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP), 2014, : 2426 - 2430
  • [7] Short-term TEC prediction of ionosphere based on ARIMA model
    Zhang, Xiaohong
    Ren, Xiaodong
    Wu, Fengbo
    Lu, Qi
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2014, 43 (02): : 118 - 124
  • [8] Short-term prediction of ionospheric TEC based on DOA-BP neural network
    Ni, Yude
    Yan, Miaoyu
    Liu, Ruihua
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2024, 45 (04):
  • [9] Ionospheric TEC prediction using Long Short-Term Memory deep learning network
    Zhichao Wen
    Shuhui Li
    Lihua Li
    Bowen Wu
    Jianqiang Fu
    Astrophysics and Space Science, 2021, 366
  • [10] Global ionospheric TEC short-term prediction by combing semiparametric and long-short term memory networks method
    Luo XiaoMin
    Cao GuangYin
    Pan Xiong
    Bian ShaoFeng
    Li Yang
    Zhang NuYan
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2023, 66 (05): : 1807 - 1819