Monotonicity and one-dimensional symmetry for the solutions of Δu+f(u)=0 with possibly discontinuous nonlinearity
被引:5
|
作者:
Farina, A
论文数: 0引用数: 0
h-index: 0
机构:
Univ Picardie, Fac Math & Informat, CNRS, UPRES A 6119, F-80039 Amiens, FranceUniv Picardie, Fac Math & Informat, CNRS, UPRES A 6119, F-80039 Amiens, France
Farina, A
[1
]
机构:
[1] Univ Picardie, Fac Math & Informat, CNRS, UPRES A 6119, F-80039 Amiens, France
In this Note we study monotonicity and one-dimensional symmetry properties for founded solutions of Delta u + f(u) = 0 in R-N, where the nonlinearity f can be a discontinuous function. We consider solutions u such that mu- less than or equal to u less than or equal to u(+) and u(x(1),...,x(N)) --> mu(+/-) as x(N) --> +/-infinity, uniformly with respect to x(1),...,x(N-1). We prove that the solutions are strictly increasing functions depending only on the variable x(N), whenever f belongs to a suitable class of functions F-0. Since Lipschitz-continuous functions belong to F-0 but F-0 is not included in C-0([mu(-), mu(+)]), we recover and improve upon all known results concerning the classification of the considered problem 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
机构:
Rzeszow Univ Technol, Fac Math & Appl Phys, Al Powstancow Warszawy 12, PL-35959 Rzeszow, PolandRzeszow Univ Technol, Fac Math & Appl Phys, Al Powstancow Warszawy 12, PL-35959 Rzeszow, Poland
机构:
Univ Tokyo, Dept Appl Phys, Bunkyo Ku, Tokyo 1138656, JapanUniv Tokyo, Dept Appl Phys, Bunkyo Ku, Tokyo 1138656, Japan
Maruyama, Isao
Koide, Tetsuji
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Dept Appl Phys, Bunkyo Ku, Tokyo 1138656, JapanUniv Tokyo, Dept Appl Phys, Bunkyo Ku, Tokyo 1138656, Japan
Koide, Tetsuji
Hatsugai, Yasuhiro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Dept Appl Phys, Bunkyo Ku, Tokyo 1138656, Japan
Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 3058571, JapanUniv Tokyo, Dept Appl Phys, Bunkyo Ku, Tokyo 1138656, Japan