A mean field equation on a torus:: One-dimensional symmetry of solutions

被引:11
|
作者
Cabré, X
Lucia, M
Sanchón, M
机构
[1] Inst Catalana Recerca & Estudis Avancats, Dept Matemat Aplicada 1, Barcelona 08028, Spain
[2] Univ Politecn Cataluna, E-08028 Barcelona, Spain
[3] Rutgers State Univ, Dept Math, Hill Ctr, Piscataway, NJ USA
[4] Univ Politecn Cataluna, Dept Matemat Aplicada 1, Barcelona, Spain
关键词
Bol's inequality; conformal radius; mean field equations; one-dimensional symmetry; periodic solutions;
D O I
10.1080/03605300500258857
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the equation [GRAPHICS] for u is an element of E , where E = {u is an element of H-1 (Omega(epsilon)): u is doubly periodic, integral(Omega epsilon) u = 0} and Omega(epsilon) is a rectangle of R-2 with side lengths 1/epsilon and 1, 0 < epsilon <= 1. We establish that every solution depends only on the x -variable when lambda <= lambda*(epsilon), where lambda*(epsilon) is an explicit positive constant depending on the maximum conformal radius of the rectangle. As a consequence, we obtain an explicit range of parameters epsilon and lambda in which every solution is identically zero. This range is optimal for epsilon <= 1/2.
引用
收藏
页码:1315 / 1330
页数:16
相关论文
共 50 条