共 50 条
Rota-Baxter Operators on Quadratic Algebras
被引:11
|作者:
Benito, Pilar
[1
]
Gubarev, Vsevolod
[2
,3
]
Pozhidaev, Alexander
[3
,4
]
机构:
[1] Univ La Rioja, Calle Madre Dios 853, Logrono 26004, Spain
[2] Univ Vienna, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[3] Sobolev Inst Math, Acad Koptyug Ave 4, Novosibirsk 630090, Russia
[4] Novosibirsk State Univ, Pirogova Str 2, Novosibirsk 630090, Russia
基金:
奥地利科学基金会;
关键词:
Rota-Baxter operator;
Yang-Baxter equation;
Quadratic algebra;
Grassmann algebra;
Jordan algebra of bilinear form;
Matrix algebra;
Kaplansky superalgebra;
DENDRIFORM ALGEBRAS;
LIE BIALGEBRAS;
EQUATION;
D O I:
10.1007/s00009-018-1234-5
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We prove that all Rota-Baxter operators on a quadratic division algebra are trivial. For nonzero weight, we state that all Rota-Baxter operators on the simple odd-dimensional Jordan algebra of bilinear form are projections on a subalgebra along another one. For weight zero, we find a connection between the Rota-Baxter operators and the solutions to the alternative Yang-Baxter equation on the Cayley-Dickson algebra. We also investigate the Rota-Baxter operators on the matrix algebras of order two, the Grassmann algebra of plane, and the Kaplansky superalgebra.
引用
收藏
页数:23
相关论文