Rota-Baxter Operators on Quadratic Algebras

被引:11
|
作者
Benito, Pilar [1 ]
Gubarev, Vsevolod [2 ,3 ]
Pozhidaev, Alexander [3 ,4 ]
机构
[1] Univ La Rioja, Calle Madre Dios 853, Logrono 26004, Spain
[2] Univ Vienna, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[3] Sobolev Inst Math, Acad Koptyug Ave 4, Novosibirsk 630090, Russia
[4] Novosibirsk State Univ, Pirogova Str 2, Novosibirsk 630090, Russia
基金
奥地利科学基金会;
关键词
Rota-Baxter operator; Yang-Baxter equation; Quadratic algebra; Grassmann algebra; Jordan algebra of bilinear form; Matrix algebra; Kaplansky superalgebra; DENDRIFORM ALGEBRAS; LIE BIALGEBRAS; EQUATION;
D O I
10.1007/s00009-018-1234-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that all Rota-Baxter operators on a quadratic division algebra are trivial. For nonzero weight, we state that all Rota-Baxter operators on the simple odd-dimensional Jordan algebra of bilinear form are projections on a subalgebra along another one. For weight zero, we find a connection between the Rota-Baxter operators and the solutions to the alternative Yang-Baxter equation on the Cayley-Dickson algebra. We also investigate the Rota-Baxter operators on the matrix algebras of order two, the Grassmann algebra of plane, and the Kaplansky superalgebra.
引用
收藏
页数:23
相关论文
共 50 条