We prove that all Rota-Baxter operators on a quadratic division algebra are trivial. For nonzero weight, we state that all Rota-Baxter operators on the simple odd-dimensional Jordan algebra of bilinear form are projections on a subalgebra along another one. For weight zero, we find a connection between the Rota-Baxter operators and the solutions to the alternative Yang-Baxter equation on the Cayley-Dickson algebra. We also investigate the Rota-Baxter operators on the matrix algebras of order two, the Grassmann algebra of plane, and the Kaplansky superalgebra.
机构:
Nanjing Tech Univ, Sch Phys & Math Sci, Nanjing 211816, Peoples R ChinaNanjing Tech Univ, Sch Phys & Math Sci, Nanjing 211816, Peoples R China
Gu, Yue
Wang, Shuanhong
论文数: 0引用数: 0
h-index: 0
机构:
Southeast Univ, Sch Math, Shing Tung Yau Ctr, Nanjing 210096, Peoples R ChinaNanjing Tech Univ, Sch Phys & Math Sci, Nanjing 211816, Peoples R China
Wang, Shuanhong
Ma, Tianshui
论文数: 0引用数: 0
h-index: 0
机构:
Henan Normal Univ, Sch Math & Informat Sci, Xinxiang 453007, Henan, Peoples R ChinaNanjing Tech Univ, Sch Phys & Math Sci, Nanjing 211816, Peoples R China
机构:
Henan Normal Univ, Sch Math & Informat Sci, Xinxiang, Peoples R China
Henan Normal Univ, Sch Math & Informat Sci, Xinxiang 453007, Peoples R ChinaHenan Normal Univ, Sch Math & Informat Sci, Xinxiang, Peoples R China
Zheng, Huihui
Zhao, Chan
论文数: 0引用数: 0
h-index: 0
机构:
Henan Normal Univ, Sch Math & Informat Sci, Xinxiang, Peoples R ChinaHenan Normal Univ, Sch Math & Informat Sci, Xinxiang, Peoples R China
Zhao, Chan
Liu, Linlin
论文数: 0引用数: 0
h-index: 0
机构:
Henan Inst Technol, Sch Sci, Xinxiang, Peoples R ChinaHenan Normal Univ, Sch Math & Informat Sci, Xinxiang, Peoples R China