Optimising beamformer regions of interest analysis

被引:6
|
作者
Oswal, Ashwini [1 ,2 ]
Litvak, Vladimir [1 ]
Brown, Peter [2 ]
Woolrich, Mark [1 ,2 ,3 ]
Barnes, Gareth [1 ]
机构
[1] UCL, Wellcome Trust Ctr Neuroimaging, Inst Neurol, London WC1N 3BG, England
[2] John Radcliffe Hosp, Nuffield Dept Clin Neurosci, Oxford OX3 9DU, England
[3] Oxford Ctr Human Brain Act OHBA, Oxford, England
基金
英国惠康基金;
关键词
Beamforming; Regions of interest; Bayesian PCA; MEG; SYNCHRONIZATION; CONNECTIVITY; LOCALIZATION;
D O I
10.1016/j.neuroimage.2014.08.019
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Beamforming is a spatial filtering based source reconstruction method for EEG and MEG that allows the estimation of neuronal activity at a particular location within the brain. The computation of the location specific filter depends solely on an estimate of the data covariance matrix and on the forward model. Increasing the number of M/EEG sensors, increases the quantity of data required for accurate covariance matrix estimation. Often however we have a prior hypothesis about the site of, or the signal of interest. Here we show how this prior specification, in combination with optimal estimations of data dimensionality, can give enhanced beamformer performance for relatively short data segments. Specifically we show how temporal (Bayesian Principal Component Analysis) and spatial (lead field projection) methods can be combined to produce improvements in source estimation over and above employing the approaches individually. (C) 2014 The Authors. Published by Elsevier Inc.
引用
收藏
页码:945 / 954
页数:10
相关论文
共 50 条
  • [41] Single-cell analysis of regions of interest (SCARI) using a photosensitive tag
    Anne M. van der Leun
    Mirjam E. Hoekstra
    Luuk Reinalda
    Colinda L. G. J. Scheele
    Mireille Toebes
    Michel J. van de Graaff
    Linda Y. Y. Chen
    Hanjie Li
    Akhiad Bercovich
    Yaniv Lubling
    Eyal David
    Daniela S. Thommen
    Amos Tanay
    Jacco van Rheenen
    Ido Amit
    Sander I. van Kasteren
    Ton N. Schumacher
    Nature Chemical Biology, 2021, 17 : 1139 - 1147
  • [42] Statistical analysis of multiple regions-of-interest in multiplexed spatial proteomics data
    Samorodnitsky, Sarah
    Wu, Michael C.
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (06)
  • [43] Functional connectivity analysis of fMRI data using parameterized regions-of-interest
    Weeda, Wouter D.
    Waldorp, Lourens J.
    Grasman, Raoul P. P. P.
    van Gaal, Simon
    Huizenga, Hilde M.
    NEUROIMAGE, 2011, 54 (01) : 410 - 416
  • [44] Detecting regions of interest in fMRI: An application on exploratory-based data analysis
    Dimitriadou, E
    Barth, M
    Windischberger, C
    Hornik, K
    Moser, E
    PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOL 1 & 2, 2002, : 1488 - 1492
  • [45] PlaceProfile: Employing Visual and Cluster Analysis to Profile Regions based on Points of Interest
    Christofano, Rafael Mariano
    Marcilio Junior, Wilson Estecio
    Eler, Danilo Medeiros
    PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS (ICEIS 2021), VOL 1, 2021, : 506 - 514
  • [46] Permutation Statistics for Connectivity Analysis between Regions of Interest in EEG and MEG Data
    Fahimeh Mamashli
    Matti Hämäläinen
    Jyrki Ahveninen
    Tal Kenet
    Sheraz Khan
    Scientific Reports, 9
  • [47] Permutation Statistics for Connectivity Analysis between Regions of Interest in EEG and MEG Data
    Mamashli, Fahimeh
    Hamalainen, Matti
    Ahveninen, Jyrki
    Kenet, Tal
    Khan, Sheraz
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [48] Analysis and Simulation of Frost's Beamformer
    Strupl, Miroslav
    Sovka, Pavel
    RADIOENGINEERING, 2003, 12 (02) : 1 - 9
  • [49] Beamformer for simultaneous magnetoencephalography and electroencephalography analysis
    Ko, Seokha
    Jun, Sung Chan
    JOURNAL OF APPLIED PHYSICS, 2010, 107 (09)
  • [50] Optimising reinforcement design in D regions using non-linear finite-element analysis
    Najafian, Hamidreza Amini
    Vollum, Robert L.
    MAGAZINE OF CONCRETE RESEARCH, 2013, 65 (04) : 234 - 247