Optimising beamformer regions of interest analysis

被引:6
|
作者
Oswal, Ashwini [1 ,2 ]
Litvak, Vladimir [1 ]
Brown, Peter [2 ]
Woolrich, Mark [1 ,2 ,3 ]
Barnes, Gareth [1 ]
机构
[1] UCL, Wellcome Trust Ctr Neuroimaging, Inst Neurol, London WC1N 3BG, England
[2] John Radcliffe Hosp, Nuffield Dept Clin Neurosci, Oxford OX3 9DU, England
[3] Oxford Ctr Human Brain Act OHBA, Oxford, England
基金
英国惠康基金;
关键词
Beamforming; Regions of interest; Bayesian PCA; MEG; SYNCHRONIZATION; CONNECTIVITY; LOCALIZATION;
D O I
10.1016/j.neuroimage.2014.08.019
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Beamforming is a spatial filtering based source reconstruction method for EEG and MEG that allows the estimation of neuronal activity at a particular location within the brain. The computation of the location specific filter depends solely on an estimate of the data covariance matrix and on the forward model. Increasing the number of M/EEG sensors, increases the quantity of data required for accurate covariance matrix estimation. Often however we have a prior hypothesis about the site of, or the signal of interest. Here we show how this prior specification, in combination with optimal estimations of data dimensionality, can give enhanced beamformer performance for relatively short data segments. Specifically we show how temporal (Bayesian Principal Component Analysis) and spatial (lead field projection) methods can be combined to produce improvements in source estimation over and above employing the approaches individually. (C) 2014 The Authors. Published by Elsevier Inc.
引用
收藏
页码:945 / 954
页数:10
相关论文
共 50 条
  • [21] Analysis and simulation of frost beamformer
    Strupl, M
    Sovka, P
    ANALYSIS OF BIOMEDICAL SIGNALS AND IMAGES, PROCEEDINGS, 2002, : 129 - 131
  • [22] ANALYSIS AND SIMULATION OF QSP BEAMFORMER
    Shi Shuangning Shang Yong Liang Qinglin Liang Bin (School of Electronics Engineering and Computer Science
    Journal of Electronics(China), 2007, (06) : 812 - 814
  • [23] TEMPORAL FOURIER-ANALYSIS IN THE SELECTION OF RIGHT VENTRICULAR REGIONS OF INTEREST
    DOUGLASS, KH
    LINKS, JM
    ALDERSON, PO
    WAGNER, HN
    JOURNAL OF NUCLEAR MEDICINE, 1980, 21 (06) : P46 - P46
  • [24] Regions of interest analysis of setup uncertainties for post-mastectomy radiotherapy
    Wu, C. H.
    Hsiao, K. Y.
    RADIOTHERAPY AND ONCOLOGY, 2015, 115 : S909 - S909
  • [25] Volume-of-Interest Segmentation of Cortical Regions for Multimodal Brain Analysis
    Wagenknecht, Gudrun
    Winter, Sebastian
    2008 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (2008 NSS/MIC), VOLS 1-9, 2009, : 3642 - 3646
  • [26] A Comparison of Regions of Interest in Parenchymal Analysis for Breast Cancer Risk Assessment
    Africano, Gerson
    Arponen, Otso
    Sassi, Antti
    Karivaara-Makela, Mirva
    Holli-Helenius, Kirsi
    Rinta-Kiikka, Irina
    Laaperi, Anna-Leena
    Pertuz, Said
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 1136 - 1139
  • [27] Searching Trajectories by Regions of Interest
    Shang, Shuo
    Chen, Lisi
    Jensen, Christian S.
    Wen, Ji-Rong
    Kalnis, Panos
    2018 IEEE 34TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2018, : 1741 - 1742
  • [28] Searching Trajectories by Regions of Interest
    Shang, Shuo
    Chen, Lisi
    Jensen, Christian S.
    Wen, Ji-Rong
    Kalnis, Panos
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2017, 29 (07) : 1549 - 1562
  • [29] Semantic embedding for regions of interest
    Debjyoti Paul
    Feifei Li
    Jeff M. Phillips
    The VLDB Journal, 2021, 30 : 311 - 331
  • [30] Semantic embedding for regions of interest
    Paul, Debjyoti
    Li, Feifei
    Phillips, Jeff M.
    VLDB JOURNAL, 2021, 30 (03): : 311 - 331