Optimising beamformer regions of interest analysis

被引:6
|
作者
Oswal, Ashwini [1 ,2 ]
Litvak, Vladimir [1 ]
Brown, Peter [2 ]
Woolrich, Mark [1 ,2 ,3 ]
Barnes, Gareth [1 ]
机构
[1] UCL, Wellcome Trust Ctr Neuroimaging, Inst Neurol, London WC1N 3BG, England
[2] John Radcliffe Hosp, Nuffield Dept Clin Neurosci, Oxford OX3 9DU, England
[3] Oxford Ctr Human Brain Act OHBA, Oxford, England
基金
英国惠康基金;
关键词
Beamforming; Regions of interest; Bayesian PCA; MEG; SYNCHRONIZATION; CONNECTIVITY; LOCALIZATION;
D O I
10.1016/j.neuroimage.2014.08.019
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Beamforming is a spatial filtering based source reconstruction method for EEG and MEG that allows the estimation of neuronal activity at a particular location within the brain. The computation of the location specific filter depends solely on an estimate of the data covariance matrix and on the forward model. Increasing the number of M/EEG sensors, increases the quantity of data required for accurate covariance matrix estimation. Often however we have a prior hypothesis about the site of, or the signal of interest. Here we show how this prior specification, in combination with optimal estimations of data dimensionality, can give enhanced beamformer performance for relatively short data segments. Specifically we show how temporal (Bayesian Principal Component Analysis) and spatial (lead field projection) methods can be combined to produce improvements in source estimation over and above employing the approaches individually. (C) 2014 The Authors. Published by Elsevier Inc.
引用
收藏
页码:945 / 954
页数:10
相关论文
共 50 条
  • [1] Optimising experimental design for MEG beamformer imaging
    Brookes, Matthew J.
    Vrba, Jiri
    Robinson, Stephen E.
    Stevenson, Claire M.
    Peters, Andrew M.
    Barnes, Gareth R.
    Hillebrand, Arjan
    Morris, Peter G.
    NEUROIMAGE, 2008, 39 (04) : 1788 - 1802
  • [2] ANALYSIS OF REGIONS OF INTEREST IN EMI SCANS
    BERGSTROM, M
    SUNDMAN, R
    BRITISH JOURNAL OF RADIOLOGY, 1976, 49 (582): : 549 - 560
  • [3] Fractal Analysis of Medical Images in the Irregular Regions of Interest
    Oczeretko, Edward
    Borowska, Marta
    Kitlas, Agnieszka
    Borusiewicz, Andrzej
    Sobolewska-Siemieniuk, Malgorzata
    8TH IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING, VOLS 1 AND 2, 2008, : 1063 - +
  • [4] Shape Similarity Analysis of Regions of Interest in Medical Images
    Wang, Qiang
    Charisi, Amalia
    Latecki, Longin Jan
    Gee, James
    Megalooikonomou, Vasileios
    MEDICAL IMAGING 2010: COMPUTER - AIDED DIAGNOSIS, 2010, 7624
  • [5] INTEGRATION OF POINTS OF INTEREST AND REGIONS OF INTEREST
    Li, Qi
    Gong, Yongyi
    Lu, Yixuan
    2014 IEEE CHINA SUMMIT & INTERNATIONAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (CHINASIP), 2014, : 369 - 373
  • [6] Interest in antibiotic pharmacokinetic modelling in the context of optimising dosing and reducing resistance: bibliometric analysis
    Adamiszak, Arkadiusz
    Bartkowska-Sniatkowska, Alicja
    Grzeskowiak, Edmund
    Bienert, Agnieszka
    ANAESTHESIOLOGY INTENSIVE THERAPY, 2024, 56 (02) : 129 - 140
  • [7] The German Regions of Interest
    Carlberg, B.
    PETERMANNS GEOGRAPHISCHE MITTEILUNGEN, 1941, 87 (11) : 413 - 413
  • [8] Hierarchical Regions of Interest
    Jarv, Priit
    Tammet, Tanel
    Tall, Marten
    2018 19TH IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (MDM 2018), 2018, : 86 - 95
  • [9] Algorithm for biological second messenger analysis with dynamic regions of interest
    Knighten, Jennifer M.
    Aziz, Takreem
    Pleshinger, Donald J.
    Annamdevula, Naga
    Rich, Thomas C.
    Taylor, Mark S.
    Andrews, Joel F.
    Macarilla, Christian T.
    Francis, C. Michael
    PLOS ONE, 2023, 18 (05):
  • [10] AUTOMATIC REGIONS OF INTEREST IN FACTOR ANALYSIS FOR DYNAMIC MEDICAL IMAGING
    Smidl, Vaclav
    Tichy, Ondrej
    2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 158 - 161