Semantic Labeling of Indoor Environments from 3D RGB Maps

被引:0
|
作者
Brucker, Manuel [1 ]
Durner, Maximilian [1 ]
Ambrus, Rares [2 ]
Marton, Zoltan Csaba [1 ]
Wendt, Axel [3 ,4 ]
Jensfelt, Patric [2 ]
Arras, Kai O. [3 ,4 ]
Triebel, Rudolph [1 ,5 ]
机构
[1] German Aerosp Ctr DLR, Inst Robot & Mechatron, D-82234 Oberpfaffenhofen, Germany
[2] KTH Royal Inst Technol, Ctr Autonomous Syst, SE-10044 Stockholm, Sweden
[3] Robert Bosch, Corp Res, St Joseph, MI USA
[4] Robert Bosch, Corp Res, Gerlingen, Germany
[5] Tech Univ Munich, Dep Comp Sci, Munich, Germany
基金
瑞典研究理事会;
关键词
OBJECT DETECTION; SCENE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present an approach to automatically assign semantic labels to rooms reconstructed from 3D RGB maps of apartments. Evidence for the room types is generated using state-of-the-art deep-learning techniques for scene classification and object detection based on automatically generated virtual RGB views, as well as from a geometric analysis of the map's 3D structure. The evidence is merged in a conditional random field, using statistics mined from different datasets of indoor environments. We evaluate our approach qualitatively and quantitatively and compare it to related methods.
引用
收藏
页码:1871 / 1878
页数:8
相关论文
共 50 条
  • [31] Augmenting ViSP's 3D Model-Based Tracker with RGB-D SLAM for 3D Pose Estimation in Indoor Environments
    Li-Chee-Ming, J.
    Armenakis, C.
    XXIII ISPRS CONGRESS, COMMISSION I, 2016, 41 (B1): : 925 - 932
  • [32] Semantic visualization of 3D urban environments
    Luis Pina, Jose
    Cerezo, Eva
    Seron, Francisco
    MULTIMEDIA TOOLS AND APPLICATIONS, 2012, 59 (02) : 505 - 521
  • [33] Semantic visualization of 3D urban environments
    Jose Luis Pina
    Eva Cerezo
    Francisco Seron
    Multimedia Tools and Applications, 2012, 59 : 505 - 521
  • [34] Incremental Instance-Oriented 3D Semantic Mapping via RGB-D Cameras for Unknown Indoor Scene
    Li, Wei
    Gu, Junhua
    Chen, Benwen
    Han, Jungong
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2020, 2020
  • [35] RGB×D: Learning depth-weighted RGB patches for RGB-D indoor semantic segmentation
    Cao, Jinming
    Leng, Hanchao
    Cohen-Or, Daniel
    Lischinski, Dani
    Chen, Ying
    Tu, Changhe
    Li, Yangyan
    Neurocomputing, 2021, 462 : 568 - 580
  • [36] A Survey of Indoor 3D Reconstruction Based on RGB-D Cameras
    Zhu, Jinlong
    Gao, Changbo
    Sun, Qiucheng
    Wang, Mingze
    Deng, Zhengkai
    IEEE ACCESS, 2024, 12 : 112742 - 112766
  • [37] Applications of RGB-D data for 3D reconstruction in the indoor environment
    Zou, Runyang
    Ge, Xueshi
    Wang, Geng
    2016 IEEE CHINESE GUIDANCE, NAVIGATION AND CONTROL CONFERENCE (CGNCC), 2016, : 375 - 378
  • [38] RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments
    Henry, Peter
    Krainin, Michael
    Herbst, Evan
    Ren, Xiaofeng
    Fox, Dieter
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2012, 31 (05): : 647 - 663
  • [39] Multimedia access to mobile environments using indoor semantic maps
    Medina, Javier
    Ruiz Lozano, Maria Dolores
    Delgado, Miguel
    Vila, Amparo
    MULTIMEDIA TOOLS AND APPLICATIONS, 2013, 67 (02) : 341 - 362
  • [40] Active Learning Based 3D Semantic Labeling From Images and Videos
    Rong, Mengqi
    Cui, Hainan
    Hu, Zhanyi
    Jiang, Hanqing
    Liu, Hongmin
    Shen, Shuhan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (12) : 8101 - 8115