Semantic Labeling of Indoor Environments from 3D RGB Maps

被引:0
|
作者
Brucker, Manuel [1 ]
Durner, Maximilian [1 ]
Ambrus, Rares [2 ]
Marton, Zoltan Csaba [1 ]
Wendt, Axel [3 ,4 ]
Jensfelt, Patric [2 ]
Arras, Kai O. [3 ,4 ]
Triebel, Rudolph [1 ,5 ]
机构
[1] German Aerosp Ctr DLR, Inst Robot & Mechatron, D-82234 Oberpfaffenhofen, Germany
[2] KTH Royal Inst Technol, Ctr Autonomous Syst, SE-10044 Stockholm, Sweden
[3] Robert Bosch, Corp Res, St Joseph, MI USA
[4] Robert Bosch, Corp Res, Gerlingen, Germany
[5] Tech Univ Munich, Dep Comp Sci, Munich, Germany
基金
瑞典研究理事会;
关键词
OBJECT DETECTION; SCENE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present an approach to automatically assign semantic labels to rooms reconstructed from 3D RGB maps of apartments. Evidence for the room types is generated using state-of-the-art deep-learning techniques for scene classification and object detection based on automatically generated virtual RGB views, as well as from a geometric analysis of the map's 3D structure. The evidence is merged in a conditional random field, using statistics mined from different datasets of indoor environments. We evaluate our approach qualitatively and quantitatively and compare it to related methods.
引用
收藏
页码:1871 / 1878
页数:8
相关论文
共 50 条
  • [21] 3D reconstruction of indoor environments
    Sequeira, V
    Goncalves, JGM
    Ribeiro, MI
    INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, PROCEEDINGS - VOL II, 1996, : 405 - 408
  • [22] Semantic labeling and reconstruction of grape bunches from 3D range data using a new RGB-D feature descriptor
    Mack, Jennifer
    Schindler, Frank
    Rist, Florian
    Herzog, Katja
    Toepfer, Reinhard
    Steinhage, Volker
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2018, 155 : 96 - 102
  • [23] 3D indoor scene modeling from RGB-D data: A survey
    Chen K.
    Lai Y.-K.
    Hu S.-M.
    Computational Visual Media, 2015, 1 (4) : 267 - 278
  • [24] 3D indoor scene modeling from RGB-D data:a survey
    Kang Chen
    Yu-Kun Lai
    Shi-Min Hu
    Computational Visual Media, 2015, 1 (04) : 267 - 278
  • [25] Fast and Automatic Reconstruction of Semantically Rich 3D Indoor Maps from Low-quality RGB-D Sequences
    Tang, Shengjun
    Zhang, Yunjie
    Li, You
    Yuan, Zhilu
    Wang, Yankun
    Zhang, Xiang
    Li, Xiaoming
    Zhang, Yeting
    Guo, Renzhong
    Wang, Weixi
    SENSORS, 2019, 19 (03)
  • [26] 3D Semantic Modeling of Indoor Environments based on Point Clouds and Contextual Relationships
    Quijano, Angie
    Prieto, Flavio
    INGENIERIA, 2016, 21 (03): : 305 - 323
  • [27] Colour Hue and Texture Evaluation for 3D Symbolization of Indoor Environments Using RGB-D Data
    Duenas Oviedo, Sebastian Patricio
    Delazari, Luciene Stamato
    dos Santos, Daniel Rodrigues
    CARTOGRAPHIC JOURNAL, 2017, 54 (03): : 233 - 241
  • [28] Semantic Segmentation and Labeling of 3D garments
    Liu, Li
    Wang, Ruomei
    Zhou, Fan
    Su, Zhuo
    Fu, Xiaodong
    2014 5TH INTERNATIONAL CONFERENCE ON DIGITAL HOME (ICDH), 2014, : 299 - 304
  • [29] Floor Plans from 3D Reconstruction of Indoor Environments
    Tascon Vidarte, Jose David
    2016 XXI SYMPOSIUM ON SIGNAL PROCESSING, IMAGES AND ARTIFICIAL VISION (STSIVA), 2016,
  • [30] Incremental 3D Semantic Scene Graph Prediction from RGB Sequences
    Wu, Shun-Cheng
    Tateno, Keisuke
    Navab, Nassir
    Tombari, Federico
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 5064 - 5074