Stability and bifurcations in a nonlocal delayed reaction-diffusion population model

被引:51
|
作者
Chen, Shanshan [1 ,2 ]
Yu, Jianshe [1 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
[2] Harbin Inst Technol, Dept Math, Weihai 264209, Shandong, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Reaction diffusion equation; Nonlocal delay; Hopf bifurcation; Stability; TRAVELING-WAVE FRONTS; HOPF-BIFURCATION; ASYMPTOTIC-BEHAVIOR; EQUATIONS; DYNAMICS; SYSTEMS;
D O I
10.1016/j.jde.2015.08.038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A nonlocal delayed reaction diffusion equation with Dirichlet boundary condition is considered in this paper. It is shown that a positive spatially nonhomogeneous equilibrium bifurcates from the trivial equilibrium. The stability/instability of the bifurcated positive equilibrium and associated Hopf bifurcation are investigated, providing us with a complete picture of the dynamics. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:218 / 240
页数:23
相关论文
共 50 条
  • [41] BIFURCATIONS IN REACTION-DIFFUSION PROBLEMS
    HOWARD, LN
    ADVANCES IN MATHEMATICS, 1975, 16 (02) : 246 - 258
  • [42] Stability and Hopf Bifurcation in a Reaction-Diffusion Model with Chemotaxis and Nonlocal Delay Effect
    Li, Dong
    Guo, Shangjiang
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (04):
  • [43] GLOBAL STABILITY OF MONOSTABLE TRAVELING WAVES FOR NONLOCAL TIME-DELAYED REACTION-DIFFUSION EQUATIONS
    Mei, Ming
    Ou, Chunhua
    Zhao, Xiao-Qiang
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (06) : 2762 - 2790
  • [44] STABILITY AND HOPF BIFURCATIONS FOR A DELAYED DIFFUSION SYSTEM IN POPULATION DYNAMICS
    Yan, Xiang-Ping
    Li, Wan-Tong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (01): : 367 - 399
  • [45] STABILITY IN A REACTION-DIFFUSION MODEL OF MUTUALISM
    HUTSON, V
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (01) : 58 - 66
  • [46] Uniform stability of delayed impulsive reaction-diffusion systems
    Suriguga, Ma
    Kao, Yonggui
    Hyder, Abd-Allah
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 372
  • [47] Hopf bifurcation in a spatial heterogeneous and nonlocal delayed reaction-diffusion equation
    Li, Yanqiu
    Zhou, Yibo
    Zhu, Lushuai
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 119
  • [48] ENTIRE SOLUTIONS IN BISTABLE REACTION-DIFFUSION EQUATIONS WITH NONLOCAL DELAYED NONLINEARITY
    Wang, Zhi-Cheng
    Li, Wan-Tong
    Ruan, Shigui
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (04) : 2047 - 2084
  • [49] Global dynamics of a nonlocal delayed reaction-diffusion equation on a half plane
    Hu, Wenjie
    Duan, Yueliang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (02):
  • [50] Travelling wave fronts in nonlocal delayed reaction-diffusion systems and applications
    Shuxia Pan
    Wan-Tong Li
    Guo Lin
    Zeitschrift für angewandte Mathematik und Physik, 2009, 60 : 377 - 392