Stability and bifurcations in a nonlocal delayed reaction-diffusion population model

被引:51
|
作者
Chen, Shanshan [1 ,2 ]
Yu, Jianshe [1 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
[2] Harbin Inst Technol, Dept Math, Weihai 264209, Shandong, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Reaction diffusion equation; Nonlocal delay; Hopf bifurcation; Stability; TRAVELING-WAVE FRONTS; HOPF-BIFURCATION; ASYMPTOTIC-BEHAVIOR; EQUATIONS; DYNAMICS; SYSTEMS;
D O I
10.1016/j.jde.2015.08.038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A nonlocal delayed reaction diffusion equation with Dirichlet boundary condition is considered in this paper. It is shown that a positive spatially nonhomogeneous equilibrium bifurcates from the trivial equilibrium. The stability/instability of the bifurcated positive equilibrium and associated Hopf bifurcation are investigated, providing us with a complete picture of the dynamics. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:218 / 240
页数:23
相关论文
共 50 条