Stability and bifurcations in a nonlocal delayed reaction-diffusion population model

被引:51
|
作者
Chen, Shanshan [1 ,2 ]
Yu, Jianshe [1 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
[2] Harbin Inst Technol, Dept Math, Weihai 264209, Shandong, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Reaction diffusion equation; Nonlocal delay; Hopf bifurcation; Stability; TRAVELING-WAVE FRONTS; HOPF-BIFURCATION; ASYMPTOTIC-BEHAVIOR; EQUATIONS; DYNAMICS; SYSTEMS;
D O I
10.1016/j.jde.2015.08.038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A nonlocal delayed reaction diffusion equation with Dirichlet boundary condition is considered in this paper. It is shown that a positive spatially nonhomogeneous equilibrium bifurcates from the trivial equilibrium. The stability/instability of the bifurcated positive equilibrium and associated Hopf bifurcation are investigated, providing us with a complete picture of the dynamics. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:218 / 240
页数:23
相关论文
共 50 条
  • [1] Global stability for a nonlocal reaction-diffusion population model
    Deng, Keng
    Wu, Yixiang
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 25 : 127 - 136
  • [2] On a nonlocal reaction-diffusion population model
    Deng, Keng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2008, 9 (01): : 65 - 73
  • [3] Properties of Hopf bifurcation to a reaction-diffusion population model with nonlocal delayed effect
    Yan, Xiang-Ping
    Zhang, Cun-Hua
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 385 : 155 - 182
  • [4] Stability of bifurcating periodic solutions in a delayed reaction-diffusion population model
    Yan, Xiang-Ping
    Li, Wan-Tong
    NONLINEARITY, 2010, 23 (06) : 1413 - 1431
  • [5] MULTIDIMENSIONAL STABILITY OF PLANAR WAVES FOR DELAYED REACTION-DIFFUSION EQUATION WITH NONLOCAL DIFFUSION
    Ma, Zhaohai
    Wu, Xin
    Yuan, Rong
    Wang, Yang
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2019, 9 (03): : 962 - 980
  • [6] Nonlinear Stability of Traveling Wavefronts for Delayed Reaction-diffusion Equation with Nonlocal Diffusion
    Ma, Zhaohai
    Yuan, Rong
    TAIWANESE JOURNAL OF MATHEMATICS, 2016, 20 (04): : 871 - 896
  • [7] THRESHOLD DYNAMICS OF A DELAYED NONLOCAL REACTION-DIFFUSION CHOLERA MODEL
    Liu, Weiwei
    Wang, Jinliang
    Chen, Yuming
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (09): : 4867 - 4885
  • [8] Dynamics of a strongly nonlocal reaction-diffusion population model
    Billingham, J
    NONLINEARITY, 2004, 17 (01) : 313 - 346
  • [9] PULSES AND GLOBAL BIFURCATIONS IN A NONLOCAL REACTION-DIFFUSION SYSTEM
    GRAHAM, MD
    MIDDYA, U
    LUSS, D
    PHYSICAL REVIEW E, 1993, 48 (04): : 2917 - 2923
  • [10] Hopf bifurcations in a reaction-diffusion population model with delay effect
    Su, Ying
    Wei, Junjie
    Shi, Junping
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (04) : 1156 - 1184