On the Diophantine equation X2N+22α52βp2γ = Z5

被引:0
|
作者
Goedhart, Eva G. [1 ]
Grundman, Helen G. [2 ]
机构
[1] Lebanon Valley Coll, Dept Math Sci, Annville, PA 17003 USA
[2] Bryn Mawr Coll, Dept Math, Bryn Mawr, PA 19010 USA
关键词
Diophantine equations; Modular approach; X(2)+2(A); CURVES;
D O I
10.1007/s10998-017-0185-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that for each prime p, positive integer a, and non-negative integers beta and gamma, the Diophantine equation X-2N + 2(2 alpha)5(2 beta) p(2 gamma) = Z(5) has no solution with N, X, Z is an element of Z(+), N > 1, and gcd(X, Z) = 1.
引用
收藏
页码:196 / 200
页数:5
相关论文
共 50 条
  • [41] ON THE DIOPHANTINE EQUATION X-2 - (p(2m)
    He, Bo
    Togbe, Alain
    Yuan, Pingzhi
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2010, 43 (01) : 31 - 44
  • [42] A NOTE ON THE DIOPHANTINE EQUATION X(2)+B(Y)=C(Z)
    LE, MH
    ACTA ARITHMETICA, 1995, 71 (03) : 253 - 257
  • [43] ON THE DIOPHANTINE EQUATION 2(x)
    Rabago, Julius Fergy T.
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2016, 22 (02) : 177 - 181
  • [44] ON THE DIOPHANTINE EQUATION x(2)+2(a) . 11(b) = y(n)
    Cangul, Ismail Naci
    Demirci, Musa
    Luca, Florian
    Pinter, Akos
    Soydan, Gokhan
    FIBONACCI QUARTERLY, 2010, 48 (01): : 39 - 46
  • [45] ON THE DIOPHANTINE EQUATION x(2)
    Cangul, Ismail Naci
    Demirci, Musa
    Soydan, Gokhan
    Tzanakis, Nikos
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2010, 43 (02) : 209 - 225
  • [46] THE DIOPHANTINE EQUATION A(X)+B(Y)=C(Z) .2.
    TERAI, N
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1995, 71 (06) : 109 - 110
  • [47] On the diophantine equation x2+2α5β13γ=yn
    Goins, Edray
    Luca, Florian
    Togbe, Alain
    ALGORITHMIC NUMBER THEORY, 2008, 5011 : 430 - +
  • [48] ON THE DIOPHANTINE EQUATION z2 = f(x)2 ± f(y)2, II
    He, Bo
    Togbe, Alain
    Ulas, Maciej
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 82 (02) : 187 - 204
  • [49] On the Diophantine equation (2x − 1)(py − 1) = 2z2
    Ruizhou Tong
    Czechoslovak Mathematical Journal, 2021, 71 : 689 - 696
  • [50] ON THE DIOPHANTINE EQUATION Z(2) = X(4)+DX(2)Y(2)+Y(4)
    COHN, JHE
    GLASGOW MATHEMATICAL JOURNAL, 1994, 36 : 283 - 285