On the Diophantine equation X2N+22α52βp2γ = Z5

被引:0
|
作者
Goedhart, Eva G. [1 ]
Grundman, Helen G. [2 ]
机构
[1] Lebanon Valley Coll, Dept Math Sci, Annville, PA 17003 USA
[2] Bryn Mawr Coll, Dept Math, Bryn Mawr, PA 19010 USA
关键词
Diophantine equations; Modular approach; X(2)+2(A); CURVES;
D O I
10.1007/s10998-017-0185-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that for each prime p, positive integer a, and non-negative integers beta and gamma, the Diophantine equation X-2N + 2(2 alpha)5(2 beta) p(2 gamma) = Z(5) has no solution with N, X, Z is an element of Z(+), N > 1, and gcd(X, Z) = 1.
引用
收藏
页码:196 / 200
页数:5
相关论文
共 50 条
  • [31] On the Diophantine equation z2 = f(x)2 ± f(y)2
    Ulas, Maciej
    Togbe, Alain
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2010, 76 (1-2): : 183 - 201
  • [32] THE DIOPHANTINE EQUATION X(2)+3=Y(N)
    COHEN, JHE
    GLASGOW MATHEMATICAL JOURNAL, 1993, 35 : 203 - 206
  • [33] On the diophantine equation x2+(p1Z1 ••• psZs)2=2yn
    Pink, I
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2004, 65 (1-2): : 205 - 213
  • [34] ON THE DIOPHANTINE EQUATION 2(x) = x(2)
    Gica, Alexandru
    Luca, Florian
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2012, 46 (01) : 109 - 116
  • [35] DIOPHANTINE EQUATION X2+Y2+Z2=M2
    SPIRA, R
    AMERICAN MATHEMATICAL MONTHLY, 1962, 69 (05): : 360 - &
  • [36] On the Exponential Diophantine equation 5x - 3y = z2
    Thongnak, Sutthiwat
    Kaewong, Theeradach
    Chuayjan, Wariam
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (01): : 99 - 102
  • [38] On the Diophantine Equation x(2)
    Yow, K. S.
    Sapar, S. H.
    Atan, K. A.
    PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY, 2013, 21 (02): : 443 - 457
  • [39] On the diophantine equation x2 − Dy2 = n
    DaSheng Wei
    Science China Mathematics, 2013, 56 : 227 - 238
  • [40] THE DIOPHANTINE EQUATION X2+7=2N
    JOHNSON, W
    AMERICAN MATHEMATICAL MONTHLY, 1987, 94 (01): : 59 - 62