Bottomonium suppression in an open quantum system using the quantum trajectories method

被引:54
|
作者
Brambilla, Nora [1 ,2 ]
Angel Escobedo, Miguel [3 ]
Strickland, Michael [4 ]
Vairo, Antonio [1 ]
Vander Griend, Peter [1 ]
Weber, Johannes Heinrich [5 ,6 ,7 ,8 ]
机构
[1] Tech Univ Munich, Phys Dept, James Franck Str 1, D-85748 Garching, Germany
[2] Tech Univ Munich, Inst Adv Study, Lichtenbergstr 2 A, D-85748 Garching, Germany
[3] Univ Santiago de Compostela, Inst Galego Fis Altas Enerxias IGFAE, E-15782 Galicia, Spain
[4] Kent State Univ, Dept Phys, Kent, OH 44242 USA
[5] Michigan State Univ, Dept Computat Math Sci & Engn, E Lansing, MI 48824 USA
[6] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[7] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
[8] IRIS Adlershof, D-12489 Berlin, Germany
关键词
Heavy Ion Phenomenology; QCD Phenomenology; HEAVY QUARKONIUM; ANISOTROPIC HYDRODYNAMICS; !text type='PYTHON']PYTHON[!/text] FRAMEWORK; QCD; DYNAMICS; EQUATIONS; DIFFUSION; QUTIP; NRQCD; REAL;
D O I
10.1007/JHEP05(2021)136
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We solve the Lindblad equation describing the Brownian motion of a Coulombic heavy quark-antiquark pair in a strongly coupled quark-gluon plasma using the highly efficient Monte Carlo wave-function method. The Lindblad equation has been derived in the framework of pNRQCD and fully accounts for the quantum and non-Abelian nature of the system. The hydrodynamics of the plasma is realistically implemented through a 3+1D dissipative hydrodynamics code. We compute the bottomonium nuclear modification factor and compare with the most recent LHC data. The computation does not rely on any free parameter, as it depends on two transport coefficients that have been evaluated independently in lattice QCD. Our final results, which include late-time feed down of excited states, agree well with the available data from LHC 5.02 TeV PbPb collisions.
引用
收藏
页数:47
相关论文
共 50 条
  • [41] Quantum trajectories
    Blaszak, Maciej
    Domanski, Ziemowit
    PHYSICS LETTERS A, 2012, 376 (47-48) : 3593 - 3598
  • [42] Efficient quantum simulation of open quantum system dynamics on noisy quantum computers
    Sun, Shin
    Shih, Li-Chai
    Cheng, Yuan-Chung
    PHYSICA SCRIPTA, 2024, 99 (03)
  • [43] Quantum Markov semigroup for open quantum system interacting with quantum Bernoulli noises
    Zhang, Lu
    Wang, Caishi
    REVIEWS IN MATHEMATICAL PHYSICS, 2023, 35 (08)
  • [44] Quantum simulator of an open quantum system using superconducting qubits: exciton transport in photosynthetic complexes
    Mostame, Sarah
    Rebentrost, Patrick
    Eisfeld, Alexander
    Kerman, Andrew J.
    Tsomokos, Dimitris I.
    Aspuru-Guzik, Alan
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [45] EVOLUTION OF QUANTUM SUPERPOSITIONS IN OPEN ENVIRONMENTS - QUANTUM TRAJECTORIES, JUMPS, AND LOCALIZATION IN PHASE-SPACE
    GARRAWAY, BM
    KNIGHT, PL
    PHYSICAL REVIEW A, 1994, 50 (03): : 2548 - 2563
  • [46] Quantum and Classical Correlations in Open Quantum Spin Lattices via Truncated-Cumulant Trajectories
    Verstraelen, Wouter
    Huybrechts, Dolf
    Roscilde, Tommaso
    Wouters, Michiel
    PRX QUANTUM, 2023, 4 (03):
  • [47] Electronic Quantum Trajectories in a Quantum Dot
    Yang, Ciann-Dong
    Huang, Shih-Ming
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2014, 114 (14) : 920 - 930
  • [48] Quantum trajectories and quantum measurement theory
    Wiseman, HM
    QUANTUM AND SEMICLASSICAL OPTICS, 1996, 8 (01): : 205 - 222
  • [49] Thermodynamics of quantum trajectories on a quantum computer
    Cech, Marcel
    Lesanovsky, Igor
    Carollo, Federico
    arXiv, 2023,
  • [50] Lie algebras and suppression of decoherence in open quantum systems
    Ritter, WG
    PHYSICAL REVIEW A, 2005, 72 (01)