Bottomonium suppression in an open quantum system using the quantum trajectories method

被引:54
|
作者
Brambilla, Nora [1 ,2 ]
Angel Escobedo, Miguel [3 ]
Strickland, Michael [4 ]
Vairo, Antonio [1 ]
Vander Griend, Peter [1 ]
Weber, Johannes Heinrich [5 ,6 ,7 ,8 ]
机构
[1] Tech Univ Munich, Phys Dept, James Franck Str 1, D-85748 Garching, Germany
[2] Tech Univ Munich, Inst Adv Study, Lichtenbergstr 2 A, D-85748 Garching, Germany
[3] Univ Santiago de Compostela, Inst Galego Fis Altas Enerxias IGFAE, E-15782 Galicia, Spain
[4] Kent State Univ, Dept Phys, Kent, OH 44242 USA
[5] Michigan State Univ, Dept Computat Math Sci & Engn, E Lansing, MI 48824 USA
[6] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[7] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
[8] IRIS Adlershof, D-12489 Berlin, Germany
关键词
Heavy Ion Phenomenology; QCD Phenomenology; HEAVY QUARKONIUM; ANISOTROPIC HYDRODYNAMICS; !text type='PYTHON']PYTHON[!/text] FRAMEWORK; QCD; DYNAMICS; EQUATIONS; DIFFUSION; QUTIP; NRQCD; REAL;
D O I
10.1007/JHEP05(2021)136
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We solve the Lindblad equation describing the Brownian motion of a Coulombic heavy quark-antiquark pair in a strongly coupled quark-gluon plasma using the highly efficient Monte Carlo wave-function method. The Lindblad equation has been derived in the framework of pNRQCD and fully accounts for the quantum and non-Abelian nature of the system. The hydrodynamics of the plasma is realistically implemented through a 3+1D dissipative hydrodynamics code. We compute the bottomonium nuclear modification factor and compare with the most recent LHC data. The computation does not rely on any free parameter, as it depends on two transport coefficients that have been evaluated independently in lattice QCD. Our final results, which include late-time feed down of excited states, agree well with the available data from LHC 5.02 TeV PbPb collisions.
引用
收藏
页数:47
相关论文
共 50 条
  • [31] Applicability of transfer tensor method for open quantum system dynamics
    Gelzinis, Andrius
    Rybakovas, Edvardas
    Valkunas, Leonas
    JOURNAL OF CHEMICAL PHYSICS, 2017, 147 (23):
  • [32] Open quantum cosmological system
    Shandera, Sarah
    Agarwal, Nishant
    Kamal, Archana
    PHYSICAL REVIEW D, 2018, 98 (08):
  • [33] Complexity for an open quantum system
    Bhattacharyya, Arpan
    Hanif, Tanvir
    Haque, S. Shajidul
    Rahman, Md Khaledur
    PHYSICAL REVIEW D, 2022, 105 (04)
  • [34] Multifractality of open quantum system
    Bilen, Agustin M.
    Garcia-Mata, Ignacio
    Georgeot, Bertrand
    Giraud, Olivier
    PHYSICAL REVIEW E, 2019, 100 (03)
  • [35] Incorporation of quantum effects into dynamics of nuclei using approximate quantum trajectories
    Garashchuk, Sophya
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [36] Efficient optimization of state preparation in quantum networks using quantum trajectories
    Goerz, Michael H.
    Jacobs, Kurt
    QUANTUM SCIENCE AND TECHNOLOGY, 2018, 3 (04):
  • [37] Using quantum trajectories and adaptive grids to solve quantum dynamical problems
    Wyatt, RE
    Bittner, ER
    COMPUTING IN SCIENCE & ENGINEERING, 2003, 5 (04) : 22 - 30
  • [38] CONSISTENT INTERPRETATION OF QUANTUM-MECHANICS USING QUANTUM TRAJECTORIES - COMMENT
    FINK, H
    LESCHKE, H
    PHYSICAL REVIEW LETTERS, 1994, 72 (11) : 1770 - 1770
  • [39] Quantum trajectories
    van Dorsselaer, FE
    Nienhuis, G
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2000, 2 (04) : R25 - R33
  • [40] CONSISTENT INTERPRETATION OF QUANTUM-MECHANICS USING QUANTUM TRAJECTORIES - REPLY
    GRIFFITHS, RB
    PHYSICAL REVIEW LETTERS, 1994, 72 (11) : 1771 - 1771