Bottomonium suppression in an open quantum system using the quantum trajectories method

被引:54
|
作者
Brambilla, Nora [1 ,2 ]
Angel Escobedo, Miguel [3 ]
Strickland, Michael [4 ]
Vairo, Antonio [1 ]
Vander Griend, Peter [1 ]
Weber, Johannes Heinrich [5 ,6 ,7 ,8 ]
机构
[1] Tech Univ Munich, Phys Dept, James Franck Str 1, D-85748 Garching, Germany
[2] Tech Univ Munich, Inst Adv Study, Lichtenbergstr 2 A, D-85748 Garching, Germany
[3] Univ Santiago de Compostela, Inst Galego Fis Altas Enerxias IGFAE, E-15782 Galicia, Spain
[4] Kent State Univ, Dept Phys, Kent, OH 44242 USA
[5] Michigan State Univ, Dept Computat Math Sci & Engn, E Lansing, MI 48824 USA
[6] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[7] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
[8] IRIS Adlershof, D-12489 Berlin, Germany
关键词
Heavy Ion Phenomenology; QCD Phenomenology; HEAVY QUARKONIUM; ANISOTROPIC HYDRODYNAMICS; !text type='PYTHON']PYTHON[!/text] FRAMEWORK; QCD; DYNAMICS; EQUATIONS; DIFFUSION; QUTIP; NRQCD; REAL;
D O I
10.1007/JHEP05(2021)136
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We solve the Lindblad equation describing the Brownian motion of a Coulombic heavy quark-antiquark pair in a strongly coupled quark-gluon plasma using the highly efficient Monte Carlo wave-function method. The Lindblad equation has been derived in the framework of pNRQCD and fully accounts for the quantum and non-Abelian nature of the system. The hydrodynamics of the plasma is realistically implemented through a 3+1D dissipative hydrodynamics code. We compute the bottomonium nuclear modification factor and compare with the most recent LHC data. The computation does not rely on any free parameter, as it depends on two transport coefficients that have been evaluated independently in lattice QCD. Our final results, which include late-time feed down of excited states, agree well with the available data from LHC 5.02 TeV PbPb collisions.
引用
收藏
页数:47
相关论文
共 50 条
  • [1] Bottomonium suppression in an open quantum system using the quantum trajectories method
    Nora Brambilla
    Miguel Ángel Escobedo
    Michael Strickland
    Antonio Vairo
    Peter Vander Griend
    Johannes Heinrich Weber
    Journal of High Energy Physics, 2021
  • [2] Bottomonium suppression at RHIC and LHC in an open quantum system approach
    Strickland, Michael
    Thapa, Sabin
    PHYSICAL REVIEW D, 2023, 108 (01)
  • [3] Bottomonium suppression and elliptic flow using Heavy Quarkonium Quantum Dynamics
    Islam, Ajaharul
    Strickland, Michael
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (03)
  • [4] Bottomonium suppression and elliptic flow using Heavy Quarkonium Quantum Dynamics
    Ajaharul Islam
    Michael Strickland
    Journal of High Energy Physics, 2021
  • [5] Open System Dynamics with Non-Markovian Quantum Trajectories
    Fachbereich Physik, Universität GH Essen, 45117 Essen, Germany
    不详
    不详
    Phys Rev Lett, 9 (1801-1805):
  • [6] Bottomonium production in heavy-ion collisions using quantum trajectories: Differential observables and momentum anisotropy
    Brambilla, Nora
    Escobedo, Miguel Angel
    Strickland, Michael
    Vairo, Antonio
    Vander Griend, Peter
    Weber, Johannes Heinrich
    PHYSICAL REVIEW D, 2021, 104 (09)
  • [7] Open system dynamics with non-Markovian quantum trajectories
    Strunz, WT
    Diósi, L
    Gisin, N
    PHYSICAL REVIEW LETTERS, 1999, 82 (09) : 1801 - 1805
  • [8] Quantum trajectories and open many-body quantum systems
    Daley, Andrew J.
    ADVANCES IN PHYSICS, 2014, 63 (02) : 77 - 149
  • [9] Open quantum systems and classical trajectories
    Rebolledo, R
    STOCHASTIC ANALYSIS AND MATHEMATICAL PHYSICS (SAMP/ANESTOC 2002), 2004, : 141 - 164
  • [10] Bottomonium suppression and elliptic flow from real-time quantum evolution
    Islam, Ajaharul
    Strickland, Michael
    PHYSICS LETTERS B, 2020, 811