Painleve Analysis and Darboux Transformation for a Variable-Coefficient Boussinesq System in Fluid Dynamics with Symbolic Computation

被引:0
|
作者
Li Hong-Zhe [1 ]
Tian Bo [1 ,2 ,3 ]
Li Li-Li [1 ]
Zhang Hai-Qiang [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
[3] Beijing Univ Posts & Telecommun, Minist Educ, Key Lab Opt Commun & Lightwave Technol, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
variable-coefficient Boussinesq system; Lax pair; Darboux transformation; soliton solutions; symbolic computation; TRAVELING-WAVE SOLUTIONS; EQUATIONS;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The new soliton solutions for the variable-coefficient Boussinesq system, whose applications are seen in fluid dynamics, are studied in this paper with symbolic computation. First, the Pain love analysis is used to investigate its integrability properties. For the identified case we give, the Lax pair of the system is found, and then the Darboux transformation is constructed. At last, some new soliton solutions are presented via the Darboux method. Those solutions might be of some value in fluid dynamics.
引用
收藏
页码:831 / 836
页数:6
相关论文
共 50 条
  • [31] Incompressible-Fluid Symbolic Computation and Backlund Transformation: (3+1)-Dimensional Variable-Coefficient Boiti-Leon-Manna-Pempinelli Model
    Gao, Xin-Yi
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2015, 70 (01): : 59 - 61
  • [32] Darboux Transformation and Soliton Solutions for a Variable-Coefficient Modified Kortweg-de Vries Model from Fluid Mechanics, Ocean Dynamics, and Plasma Mechanics
    盖晓玲
    高以天
    孟得新
    王雷
    孙志远
    吕兴
    冯茜
    王明振
    于鑫
    朱顺辉
    CommunicationsinTheoreticalPhysics, 2010, 53 (04) : 673 - 678
  • [33] Darboux Transformation and Soliton Solutions for a Variable-Coefficient Modified Kortweg-de Vries Model from Fluid Mechanics, Ocean Dynamics, and Plasma Mechanics
    Gai Xiao-Ling
    Gao Yi-Tian
    Meng De-Xin
    Wang Lei
    Sun Zhi-Yuan
    Lue Xing
    Feng Qian
    Wang Ming-Zhen
    Yu Xin
    Zhu Shun-Hui
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2010, 53 (04) : 673 - 678
  • [34] Symbolic computation on soliton solutions for variable-coefficient nonlinear Schrodinger equation in nonlinear optics
    Liu, Wen-Jun
    Tian, Bo
    OPTICAL AND QUANTUM ELECTRONICS, 2012, 43 (11-15) : 147 - 162
  • [35] Similarity reductions for a generalized variable-coefficient Kadomtsev-Petviashvili equation with symbolic computation
    Bo, T
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1999, 10 (06): : 1089 - 1097
  • [36] Variable-coefficient balancing-act method and variable-coefficient KdV equation from fluid dynamics and plasma physics
    Tian, B
    Gao, YT
    EUROPEAN PHYSICAL JOURNAL B, 2001, 22 (03): : 351 - 360
  • [37] Symbolic computation of conservation laws and exact solutions of a coupled variable-coefficient modified Korteweg–de Vries system
    Abdullahi Rashid Adem
    Chaudry Masood Khalique
    Computational Mathematics and Mathematical Physics, 2016, 56 : 650 - 660
  • [38] Solitonic solutions for a variable-coefficient variant Boussinesq system in the long gravity waves
    Meng, De-Xin
    Gao, Yi-Tian
    Gai, Xiao-Ling
    Wang, Lei
    Yu, Xin
    Sun, Zhi-Yuan
    Wang, Ming-Zhen
    Lue, Xing
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (05) : 1744 - 1751
  • [39] Variable-coefficient balancing-act method and variable-coefficient KdV equation from fluid dynamics and plasma physics
    Bo Tian
    Yi-Tian Gao
    The European Physical Journal B - Condensed Matter and Complex Systems, 2001, 22 (3): : 351 - 360
  • [40] Existence of formal conservation laws of a variable-coefficient korteweg-de vries equation from fluid dynamics and plasma physics via symbolic computation
    Zhang Chun-Yi
    Li Juan
    Meng Xiang-Hua
    Xu Tao
    Gao Yi-Tian
    CHINESE PHYSICS LETTERS, 2008, 25 (03) : 878 - 880