Painleve Analysis and Darboux Transformation for a Variable-Coefficient Boussinesq System in Fluid Dynamics with Symbolic Computation

被引:0
|
作者
Li Hong-Zhe [1 ]
Tian Bo [1 ,2 ,3 ]
Li Li-Li [1 ]
Zhang Hai-Qiang [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
[3] Beijing Univ Posts & Telecommun, Minist Educ, Key Lab Opt Commun & Lightwave Technol, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
variable-coefficient Boussinesq system; Lax pair; Darboux transformation; soliton solutions; symbolic computation; TRAVELING-WAVE SOLUTIONS; EQUATIONS;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The new soliton solutions for the variable-coefficient Boussinesq system, whose applications are seen in fluid dynamics, are studied in this paper with symbolic computation. First, the Pain love analysis is used to investigate its integrability properties. For the identified case we give, the Lax pair of the system is found, and then the Darboux transformation is constructed. At last, some new soliton solutions are presented via the Darboux method. Those solutions might be of some value in fluid dynamics.
引用
收藏
页码:831 / 836
页数:6
相关论文
共 50 条
  • [21] Variable-coefficient symbolic computation approach for finding multiple rogue wave solutions of nonlinear system with variable coefficients
    Liu, Jian-Guo
    Zhu, Wen-Hui
    He, Yan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (04):
  • [22] Darboux transformation and vector solitons for a variable-coefficient coherently coupled nonlinear Schrodinger system in nonlinear optics
    Chai, Jun
    Tian, Bo
    Chai, Han-Peng
    OPTICAL ENGINEERING, 2016, 55 (11)
  • [23] Symbolic computation on the long gravity water waves: scaling transformations, bilinear forms, N-soliton solutions and auto-Backlund transformation for a variable-coefficient variant Boussinesq system
    Gao, Xin-Yi
    Guo, Yong-Jiang
    Shan, Wen-Rui
    CHAOS SOLITONS & FRACTALS, 2021, 152
  • [24] Backlund transformation and conservation laws for the variable-coefficient N-coupled nonlinear Schrodinger equations with symbolic computation
    Meng, Xiang Hua
    Tian, Bo
    Xu, Tao
    Zhang, Hai Qiang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (05) : 969 - 974
  • [25] Soliton Solutions for a Generalized Inhomogeneous Variable-Coefficient Hirota Equation with Symbolic Computation
    Wang, Pan
    Tian, Bo
    Liu, Wen-Jun
    Li, Min
    Sun, Kun
    STUDIES IN APPLIED MATHEMATICS, 2010, 125 (02) : 213 - 222
  • [26] Interactions of solitons in a variable-coefficient generalized Boussinesq system in shallow water
    Meng, De-Xin
    Gao, Yi-Tian
    Wang, Lei
    Gai, Xiao-Ling
    Lin, Guo-Dong
    PHYSICA SCRIPTA, 2010, 82 (04)
  • [27] DARBOUX TRANSFORMATION AND EXACT SOLUTIONS OF THE VARIABLE-COEFFICIENT NONLOCAL GERDJIKOV-IVANOV EQUATION
    Hu, Yuru
    Zhang, Feng
    Xin, Xiangpeng
    Liu, Hanze
    THEORETICAL AND MATHEMATICAL PHYSICS, 2022, 211 (01) : 460 - 472
  • [28] Generalized Darboux transformation and rogue waves for a coupled variable-coefficient nonlinear Schrodinger system in an inhomogeneous optical fiber
    Yang, Dan-Yu
    Tian, Bo
    Shen, Yuan
    CHINESE JOURNAL OF PHYSICS, 2023, 82 : 182 - 193
  • [29] On a variable-coefficient AB system in a baroclinic flow: Generalized Darboux transformation and non-autonomous localized waves
    Wu, Xi-Hu
    Gao, Yi-Tian
    Yu, Xin
    Liu, Fei-Yan
    WAVE MOTION, 2023, 122
  • [30] N-fold Darboux Transformation for a Generalized Variable-Coefficient Coupled Hirota-Maxwell-Bloch System
    Xue, Yushan
    Chen, Jing
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS SCIENCE AND CIVIL ENGINEERING (AMSCE 2017), 2017, 70 : 17 - 19