A Proof of Quadratic Reciprocity

被引:0
|
作者
Barnard, Virgil [1 ]
机构
[1] Univ Kentucky, Dept Comp Sci, Lexington, KY 40506 USA
来源
AMERICAN MATHEMATICAL MONTHLY | 2015年 / 122卷 / 06期
关键词
D O I
10.4169/amer.math.monthly.122.6.588
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper gives an alternative proof of the law of quadratic reciprocity that hinges on some well-known facts about Euler's criterion, the existence of primitive roots, and basic properties of the floor function.
引用
收藏
页码:588 / 592
页数:5
相关论文
共 50 条
  • [41] Modular Divisor Functions and Quadratic Reciprocity
    Steiner, Richard
    AMERICAN MATHEMATICAL MONTHLY, 2010, 117 (05): : 448 - 451
  • [43] Legendre-Teege Quadratic Reciprocity
    Villarino, Mark B. B.
    AMERICAN MATHEMATICAL MONTHLY, 2023, 130 (06): : 523 - 540
  • [44] Four Interesting Applications of Quadratic Reciprocity
    Wright, Steve
    QUADRATIC RESIDUES AND NON-RESIDUES: SELECTED TOPICS, 2016, 2171 : 79 - 118
  • [45] A quadratic reciprocity law for elliptic curves
    Verdure, Hugues
    ACTA SCIENTIARUM MATHEMATICARUM, 2009, 75 (3-4): : 457 - 465
  • [46] On quadratic reciprocity over function fields
    Merrill, KD
    Walling, LH
    PACIFIC JOURNAL OF MATHEMATICS, 1996, 173 (01) : 147 - 150
  • [47] AN APPLICATION OF QUADRATIC RECIPROCITY-II
    BREUSCH, R
    AMERICAN MATHEMATICAL MONTHLY, 1987, 94 (01): : 73 - 74
  • [48] Gauss Lemma and Law of Quadratic Reciprocity
    Yan, Li
    Liang, Xiquan
    Zhao, Junjie
    FORMALIZED MATHEMATICS, 2008, 16 (01): : 23 - 28
  • [49] QUADRATIC RECIPROCITY - ITS CONJECTURE AND APPLICATION
    COX, DA
    AMERICAN MATHEMATICAL MONTHLY, 1988, 95 (05): : 442 - 448
  • [50] A RECIPROCITY FORMULA FOR QUADRATIC-FORMS
    SANDER, JW
    MONATSHEFTE FUR MATHEMATIK, 1987, 104 (02): : 125 - 132