A Proof of Quadratic Reciprocity

被引:0
|
作者
Barnard, Virgil [1 ]
机构
[1] Univ Kentucky, Dept Comp Sci, Lexington, KY 40506 USA
来源
AMERICAN MATHEMATICAL MONTHLY | 2015年 / 122卷 / 06期
关键词
D O I
10.4169/amer.math.monthly.122.6.588
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper gives an alternative proof of the law of quadratic reciprocity that hinges on some well-known facts about Euler's criterion, the existence of primitive roots, and basic properties of the floor function.
引用
收藏
页码:588 / 592
页数:5
相关论文
共 50 条
  • [21] On the quadratic reciprocity law
    Frobenius, G
    SITZUNGSBERICHTE DER KONIGLICH PREUSSISCHEN AKADEMIE DER WISSENSCHAFTEN, 1914, : 335 - 349
  • [22] EULER AND QUADRATIC RECIPROCITY
    EDWARDS, HM
    MATHEMATICS MAGAZINE, 1983, 56 (05) : 285 - 291
  • [23] GENERAL LAW OF QUADRATIC RECIPROCITY
    TAYLOR, L
    FIBONACCI QUARTERLY, 1975, 13 (04): : 318 - &
  • [24] CASSONS INVARIANT AND QUADRATIC RECIPROCITY
    KRONHEIMER, PB
    LARSEN, MJ
    SCHERK, J
    TOPOLOGY, 1991, 30 (03) : 335 - 338
  • [25] QUADRATIC RECIPROCITY VIA RESULTANTS
    Hambleton, S.
    Scharaschkin, V.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2010, 6 (06) : 1413 - 1417
  • [26] Selmer groups and quadratic reciprocity
    F. Lemmermeyer
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2006, 76 : 279 - 293
  • [27] QUADRATIC FORMS AND BIQUADRATIC RECIPROCITY
    BROWN, E
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1972, 253 : 214 - &
  • [28] PELL CONICS AND QUADRATIC RECIPROCITY
    Hambleton, S.
    Scharaschkin, V.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2012, 42 (01) : 91 - 96
  • [29] Selmer groups and quadratic reciprocity
    Lemmermeyer, F.
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2006, 76 (1): : 279 - 293
  • [30] Quadratic reciprocity in a finite group
    Duke, W
    Hopkins, K
    AMERICAN MATHEMATICAL MONTHLY, 2005, 112 (03): : 251 - 256