Estimating internal variables and parameters of a learning agent by a particle filter

被引:0
|
作者
Samejima, K [1 ]
Doya, K [1 ]
Ueda, Y [1 ]
Kimura, M [1 ]
机构
[1] JST, CRST, ATR Computat Neurosci Labs, Dept Computat Neurobiol, Kyoto 6190288, Japan
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 16 | 2004年 / 16卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
When we model a higher order functions, such as learning and memory, we face a difficulty of comparing neural activities with hidden variables that depend on the history of sensory and motor signals and the dynamics of the network. Here, we propose novel method for estimating hidden variables of a learning agent, such as connection weights from sequences of observable variables. Bayesian estimation is a method to estimate the posterior probability of hidden variables from observable data sequence using a dynamic model of hidden and observable variables. In this paper, we apply particle filter for estimating internal parameters and metaparameters of a reinforcement learning model. We verified the effectiveness of the method using both artificial data and real animal behavioral data.
引用
收藏
页码:1335 / 1342
页数:8
相关论文
共 50 条
  • [41] A METHOD FOR ESTIMATING PARAMETERS AND QUANTILES OF DISTRIBUTIONS OF CONTINUOUS RANDOM-VARIABLES
    CASTILLO, E
    HADI, AS
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1995, 20 (04) : 421 - 439
  • [42] NUMERICAL-METHODS FOR ESTIMATING PARAMETERS IN NONLINEAR MODELS WITH ERRORS IN THE VARIABLES
    SCHWETLICK, H
    TILLER, V
    TECHNOMETRICS, 1985, 27 (01) : 17 - 24
  • [43] Estimating the parameters in the Cox model when covariate variables are measured with error
    Hu, P
    Tsiatis, AA
    Davidian, M
    BIOMETRICS, 1998, 54 (04) : 1407 - 1419
  • [44] Learning of Kalman filter parameters for lane detection
    Suttorp, Thorsten
    Buecher, Thomas
    2006 IEEE INTELLIGENT VEHICLES SYMPOSIUM, 2006, : 555 - +
  • [45] A Method for Estimating Unknown Parameters from Particle Tracking Experiments
    Ashley, Trevor T.
    Andersson, Sean B.
    BIOPHYSICAL JOURNAL, 2016, 110 (03) : 175A - 175A
  • [46] Bayesian Auxiliary Particle Filters for Estimating Neural Tuning Parameters
    Mountney, John
    Sobel, Marc
    Obeid, Iyad
    2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, : 5705 - +
  • [47] A systematic approach for estimating colloidal particle adsorption model parameters
    Lorenz-Cristea, Oliver
    Wiebe, Angela
    Thoma, Judith
    Veelders, Maik
    Briskot, Till
    Kluters, Simon
    Wang, Gang
    Saleh, David
    Rischawy, Federico
    JOURNAL OF CHROMATOGRAPHY A, 2025, 1739
  • [48] Using learning agent and filter agent to enhance accuracy of internet search result
    Chen, HY
    Yang, YM
    7TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL II, PROCEEDINGS: COMPUTER SCIENCE AND ENGINEERING, 2003, : 471 - 474
  • [49] Estimating latent class model parameters for filter questions with skip patterns
    Lin, Ting Hsiang
    QUALITY & QUANTITY, 2012, 46 (02) : 545 - 552
  • [50] Estimating Motion Parameters of Head by Using Hybrid Extended Kalman Filter
    Heo, Sejong
    Shin, Oksik
    Park, Chan Gook
    PROCEEDINGS OF THE 22ND INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS 2009), 2009, : 736 - 742