Estimating internal variables and parameters of a learning agent by a particle filter

被引:0
|
作者
Samejima, K [1 ]
Doya, K [1 ]
Ueda, Y [1 ]
Kimura, M [1 ]
机构
[1] JST, CRST, ATR Computat Neurosci Labs, Dept Computat Neurobiol, Kyoto 6190288, Japan
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 16 | 2004年 / 16卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
When we model a higher order functions, such as learning and memory, we face a difficulty of comparing neural activities with hidden variables that depend on the history of sensory and motor signals and the dynamics of the network. Here, we propose novel method for estimating hidden variables of a learning agent, such as connection weights from sequences of observable variables. Bayesian estimation is a method to estimate the posterior probability of hidden variables from observable data sequence using a dynamic model of hidden and observable variables. In this paper, we apply particle filter for estimating internal parameters and metaparameters of a reinforcement learning model. We verified the effectiveness of the method using both artificial data and real animal behavioral data.
引用
收藏
页码:1335 / 1342
页数:8
相关论文
共 50 条
  • [31] Tracking One Dimension State Space Variables With Particle Filter Method
    Dilmen, Haluk
    Talu, M. Fatih
    2015 23RD SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2015, : 1513 - 1516
  • [32] Physics-based Ankle Kinematics for Estimating Internal Parameters
    Jiang, Jiaoying
    Li, Wenjing
    Lee, Kok-Meng
    Ji, Jingjing
    2019 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2019, : 471 - 476
  • [33] Estimating Elbow Torque from Electrical Stimulation using a Particle Filter
    Chatfield, Logan T.
    McKenzie, Lachlan R.
    Fortune, Benjamin C.
    Pretty, Christopher G.
    Hayes, Michael P.
    IFAC PAPERSONLINE, 2020, 53 (02): : 15952 - 15957
  • [34] Estimating Human Metabolic Energy Expenditure using a Bootstrap Particle Filter
    Welles, Alexander P.
    Looney, David P.
    Rumpler, William V.
    Buller, Mark J.
    2017 IEEE 14TH INTERNATIONAL CONFERENCE ON WEARABLE AND IMPLANTABLE BODY SENSOR NETWORKS (BSN), 2017, : 103 - 106
  • [35] A Method of Estimating Motion Trajectory with Combining Particle Filter and Optical Flow
    Oura, Lunichi
    Yamaguchi, Teruo
    Harada, Hiroshi
    2014 14TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2014), 2014, : 1052 - 1055
  • [36] A particle filter approach to estimating target location using Brownian bridges
    Nunez, Jesse A.
    Singham, Dashi, I
    Atkinson, Michael P.
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2020, 71 (04) : 589 - 605
  • [37] GENERAL ALOGORITHM FOR ESTIMATING POWER-SYSTEM VARIABLES AND NETWORK PARAMETERS
    ALLAM, M
    LAUGHTON, MA
    IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1974, PA93 (06): : 1739 - 1739
  • [38] Estimating parameters of dynamic errors-in-variables systems with polynomial nonlinearities
    Hunyadi, Levente
    Vajk, Istvan
    SIGNAL PROCESSING SYSTEMS, 2009, : 73 - 78
  • [39] ESTIMATING PARAMETERS OF A SUM OF 2 INDEPENDENT NONIDENTICALLY DISTRIBUTED RANDOM VARIABLES
    SCLOVE, SL
    VANRYZIN, J
    ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (02): : 695 - &
  • [40] NUMERICAL METHODS FOR ESTIMATING PARAMETERS IN NONLINEAR MODELS WITH ERRORS IN THE VARIABLES.
    Schwetlick, Hubert
    Tiller, Volker
    1600, (27):