Estimating internal variables and parameters of a learning agent by a particle filter

被引:0
|
作者
Samejima, K [1 ]
Doya, K [1 ]
Ueda, Y [1 ]
Kimura, M [1 ]
机构
[1] JST, CRST, ATR Computat Neurosci Labs, Dept Computat Neurobiol, Kyoto 6190288, Japan
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 16 | 2004年 / 16卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
When we model a higher order functions, such as learning and memory, we face a difficulty of comparing neural activities with hidden variables that depend on the history of sensory and motor signals and the dynamics of the network. Here, we propose novel method for estimating hidden variables of a learning agent, such as connection weights from sequences of observable variables. Bayesian estimation is a method to estimate the posterior probability of hidden variables from observable data sequence using a dynamic model of hidden and observable variables. In this paper, we apply particle filter for estimating internal parameters and metaparameters of a reinforcement learning model. We verified the effectiveness of the method using both artificial data and real animal behavioral data.
引用
收藏
页码:1335 / 1342
页数:8
相关论文
共 50 条
  • [1] Estimating Parameters in a Model of the Human Circadian Rhythm Using a Particle Filter
    Bonarius, Jochem H.
    Linnartz, Jean-Paul M. G.
    NEUROPSYCHOBIOLOGY, 2018, 76 (01) : 8 - 8
  • [2] An adaptive particle filter (APF) for estimating states of nonlinear system with unknown parameters
    Zhao, Dexin
    Li, Ting
    Huang, Zhiping
    Su, Shaojing
    2013 25TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2013, : 2987 - 2991
  • [3] Application of Unscented Particle Filtering for estimating parameters and hidden variables in gene regulatory network
    Bo, Qiang
    Zheng-Zhi, Wang
    2010 4TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING (ICBBE 2010), 2010,
  • [4] Estimating Parameters of Nonlinear Systems Using the Elitist Particle Filter Based on Evolutionary Strategies
    Huemmer, Christian
    Hofmann, Christian
    Maas, Roland
    Kellermann, Walter
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2018, 26 (03) : 595 - 608
  • [5] Estimating the Parameters of Principal Agent Models
    Ramamohan Rao T.V.S.
    Journal of Quantitative Economics, 2015, 13 (1) : 27 - 52
  • [6] Estimating behavioral parameters in animal movement models using a state-augmented particle filter
    Dowd, Michael
    Joy, Ruth
    ECOLOGY, 2011, 92 (03) : 568 - 575
  • [7] Application of Particle Filter to Estimate Vehicle Variables
    Xie Shaobo
    Lin Cheng
    ISTM/2011: 9TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, 2011, : 526 - 531
  • [8] USE OF KALMAN FILTER FOR ESTIMATING UNKNOWN INTERNAL LOADS
    Kim, Deuk-Woo
    Park, Cheol-Soo
    Kim, In-Han
    BUILDING SIMULATION 2013: 13TH INTERNATIONAL CONFERENCE OF THE INTERNATIONAL BUILDING PERFORMANCE SIMULATION ASSOCIATION, 2013, : 1239 - 1246
  • [9] INVESTIGATION OF A NONLINEAR KALMAN FILTER FOR ESTIMATING AIRCRAFT STATE VARIABLES
    REN, D
    BROCKHAUS, R
    ZEITSCHRIFT FUR FLUGWISSENSCHAFTEN UND WELTRAUMFORSCHUNG, 1989, 13 (05): : 326 - 333
  • [10] Design and validation of an extended Kalman filter for estimating hemodynamic variables
    Luspay, Tamas
    Grigoriadis, Karolos M.
    2014 AMERICAN CONTROL CONFERENCE (ACC), 2014, : 4145 - 4150